818 resultados para big data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Az üzleti élet globalizálódása, a technológiai fejlődés által nyújtott új eszközök részben új lehetőségeket, részben új feladatokat, elvárásokat jelentenek mind a tudományos, mind a gyakorlati marketingkutatás számára. Változnak az adatfelvétel módszerei, a fogyasztók attitüdjének és magatartásának változásával a primer kutatás módszerei között is hangsúlyeltolódás következik be, megnő a megfigyeléses, a kísérleti vizsgálatok szerepe. A kvalitatív és kvantitatív kutatás közötti határvonal is elmosódik, mindkét kutatási módszertanban új típusú módszerek jelennek meg és terjednek el. A nagy adatbázisok, a Big data lehetőségeit is integrálnia kell a marketingkutatásnak és az adatelemzésnek. A tanulmány a jelenlegi változások, valamint a jövőbeli szcenáriók felvázolására is kísérletet tesz.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graph Reduction Machines, are a traditional technique for implementing functional programming languages. They allow to run programs by transforming graphs by the successive application of reduction rules. Web service composition enables the creation of new web services from existing ones. BPEL is a workflow-based language for creating web service compositions. It is also the industrial and academic standard for this kind of languages. As it is designed to compose web services, the use of BPEL in a scenario where multiple technologies need to be used is problematic: when operations other than web services need to be performed to implement the business logic of a company, part of the work is done on an ad hoc basis. To allow heterogeneous operations to be part of the same workflow, may help to improve the implementation of business processes in a principled way. This work uses a simple variation of the BPEL language for creating compositions containing not only web service operations but also big data tasks or user-defined operations. We define an extensible graph reduction machine that allows the evaluation of BPEL programs and implement this machine as proof of concept. We present some experimental results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A evolução tecnológica na comunicação contemporânea estrutura sistemas digitais via redes de computadores conectados e exploração maciça de dispositivos tecnológicos. Os dados digitais captados e distribuídos via aplicativos instalados em smartphones criam ambiente dinâmico comunicacional. O Jornalismo e a Comunicação tentam se adaptar ao novo ecossistema informacional impetrado pelas constantes inovações tecnológicas que possibilitam a criação de novos ambientes e sistemas para acesso à informação de relevância social. Surgem novas ferramentas para produção e distribuição de conteúdos jornalísticos, produtos baseados em dados e interações inteligentes, algoritmos usados em diversos processos, plataformas hiperlocais e sistemas de narrativas e produção digitais. Nesse contexto, o objetivo da pesquisa foi elaborar uma análise e comparação entre produtos de mídia e tecnologia específicos. Se as novas tecnologias acrescentam atributos às produções e narrativas jornalísticas, seus impactos na prática da atividade e também se há modificação nos processos de produção de informação de relevância social em relação aos processos jornalísticos tradicionais e consolidados. Investiga se o uso de informações insertadas pelos usuários, em tempo real, melhora a qualidade das narrativas emergentes através de dispositivos móveis e se a gamificação ou ludificação altera a percepção de credibilidade do jornalismo. Para que assim seja repensado a forma de se produzir e gerar informação e conhecimento para os públicos que demandam conteúdo

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Las comunidades colaborativas, donde grandes cantidades de personas colaboran para la producción de recursos compartidos (e.g. Github, Wikipedia, OpenStreetMap, Arduino, StackOverflow) están extendiéndose progresivamente a multitud de campos. No obstante, es complicado comprender cómo funcionan y evolucionan. ¿Qué tipos de usuarios son más activos en Wikia? ¿Cómo ha evolucionado el número de wikis activas en los últimos años? ¿Qué perfil de actividad presentan la mayor parte de colaboradores de Wikia? ¿Son más activos los hombres o las mujeres en la Wikipedia? En los proyectos de Github, ¿el esfuerzo de programación (y frecuencia de commits) se distribuye de forma homogénea a lo largo del tiempo o suele estar concentrado? Estas comunidades, típicamente online, dejan registrada su actividad en grandes bases de datos, muchas de ellas disponibles públicamente. Sin embargo, el ciudadano de a pie no tiene ni las herramientas ni el conocimiento necesario para sacar conclusiones de esos datos. En este TFG desarrollamos una herramienta de análisis exploratorio y visualización de datos de la plataforma Wikia, sitio web colaborativo que permite la creación, edición y modificación del contenido y estructura de miles de páginas web de tipo enciclopedia basadas en la tecnología wiki. Nuestro objetivo es que esta aplicación web sea usable por cualquiera y que no requiera que el usuario sea un experto en Big Data para poder visualizar las gráficas de evolución o distribuciones del comportamiento interno de la comunidad, pudiendo modificar algunos de sus parámetros y visualizando cómo cambian. Como resultado de este trabajo se ha desarrollado una primera versión de la aplicación disponible en GitHub1 y en http://chartsup.esy.es/

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ACKNOWLEDGEMENTS This research is based upon work supported in part by the U.S. ARL and U.K. Ministry of Defense under Agreement Number W911NF-06-3-0001, and by the NSF under award CNS-1213140. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views or represent the official policies of the NSF, the U.S. ARL, the U.S. Government, the U.K. Ministry of Defense or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La información sobre conceptos de innovación educomunicativa en la web, sobre todo los relacionados con las TIC, suele ser confusa y presentarse de una forma divulgativa inexacta o de una manera científica compleja en artículos largos. Además, suelen utilizarse términos en inglés o en extrañas hibridaciones. Las y los estudiantes –y cualquier persona- que buscan estos términos suelen recurrir a la divulgación inexacta, lo que hace que no comprendan el término en toda su extensión y, por tanto, que los desarrollos que se realizan, tanto teóricos como prácticos, se alejen de la excelencia ya desde su inicio. Conceptos como Branding, Big Data, Force Touch, Gamificación, Geocaching, InRead video, Inroll Video, Interfaz Social, Mobile First, Mooc, Neurocomunicación, Responsive Web Design, Transmedia, Walking Cinema, Walking Documentary, Wayfinding… o no se comprenden o se comprenden sin los matices imprescindibles para un buen desarrollo académico y profesional. Los investigadores del grupo “Museum I+D+C. Laboratorio de cultura digital y museografía hipermedia” de la Universidad Complutense de Madrid, pertenecientes a distintas universidades de Argentina, Brasil, España, México, Colombia, Chile, Ecuador y Reino Unido, coinciden en la necesidad de intentar clarificar esos términos. Queremos animar a cualquier persona que lea estas líneas a participar en el proyecto, bien proponiendo mejoras o aportando nuevos términos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ACKNOWLEDGEMENTS This research is based upon work supported in part by the U.S. ARL and U.K. Ministry of Defense under Agreement Number W911NF-06-3-0001, and by the NSF under award CNS-1213140. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views or represent the official policies of the NSF, the U.S. ARL, the U.S. Government, the U.K. Ministry of Defense or the U.K. Government. The U.S. and U.K. Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Perturbação de Hiperatividade e Défice de Atenção (PHDA) é distúrbio do comportamento que afeta entre 5 a 7% das crianças a nível global. De forma a combater os sintomas da PHDA, muitas são sujeitas a medicação e a terapia comportamental. Este trabalho insere-se no Projeto TherapyForAll®© que se foca no desenvolvimento de serious games jogos que poderão complementar o tratamento da PHDA pela via comportamental. É necessário recolher uma quantidade muito significativa de dados durante a execução dos jogos de forma a retirar conclusões sobre a evolução dos sintomas. O âmbito da dissertação recai sobre o tratamento dos dados obtidos das sessões e a sua apresentação ao profissional de saúde responsável para que ele possa rapidamente perceber o estado da criança, a sua evolução e com isso dar o apoio necessário.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Text summarization has been studied for over a half century, but traditional methods process texts empirically and neglect the fundamental characteristics and principles of language use and understanding. Automatic summarization is a desirable technique for processing big data. This reference summarizes previous text summarization approaches in a multi-dimensional category space, introduces a multi-dimensional methodology for research and development, unveils the basic characteristics and principles of language use and understanding, investigates some fundamental mechanisms of summarization, studies dimensions on representations, and proposes a multi-dimensional evaluation mechanism. Investigation extends to incorporating pictures into summary and to the summarization of videos, graphs and pictures, and converges to a general summarization method. Further, some basic behaviors of summarization are studied in the complex cyber-physical-social space. Finally, a creative summarization mechanism is proposed as an effort toward the creative summarization of things, which is an open process of interactions among physical objects, data, people, and systems in cyber-physical-social space through a multi-dimensional lens of semantic computing. The insights can inspire research and development of many computing areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The organisational decision making environment is complex, and decision makers must deal with uncertainty and ambiguity on a continuous basis. Managing and handling decision problems and implementing a solution, requires an understanding of the complexity of the decision domain to the point where the problem and its complexity, as well as the requirements for supporting decision makers, can be described. Research in the Decision Support Systems domain has been extensive over the last thirty years with an emphasis on the development of further technology and better applications on the one hand, and on the other hand, a social approach focusing on understanding what decision making is about and how developers and users should interact. This research project considers a combined approach that endeavours to understand the thinking behind managers’ decision making, as well as their informational and decisional guidance and decision support requirements. This research utilises a cognitive framework, developed in 1985 by Humphreys and Berkeley that juxtaposes the mental processes and ideas of decision problem definition and problem solution that are developed in tandem through cognitive refinement of the problem, based on the analysis and judgement of the decision maker. The framework facilitates the separation of what is essentially a continuous process, into five distinct levels of abstraction of manager’s thinking, and suggests a structure for the underlying cognitive activities. Alter (2004) argues that decision support provides a richer basis than decision support systems, in both practice and research. The constituent literature on decision support, especially in regard to modern high profile systems, including Business Intelligence and Business analytics, can give the impression that all ‘smart’ organisations utilise decision support and data analytics capabilities for all of their key decision making activities. However this empirical investigation indicates a very different reality.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many modern applications fall into the category of "large-scale" statistical problems, in which both the number of observations n and the number of features or parameters p may be large. Many existing methods focus on point estimation, despite the continued relevance of uncertainty quantification in the sciences, where the number of parameters to estimate often exceeds the sample size, despite huge increases in the value of n typically seen in many fields. Thus, the tendency in some areas of industry to dispense with traditional statistical analysis on the basis that "n=all" is of little relevance outside of certain narrow applications. The main result of the Big Data revolution in most fields has instead been to make computation much harder without reducing the importance of uncertainty quantification. Bayesian methods excel at uncertainty quantification, but often scale poorly relative to alternatives. This conflict between the statistical advantages of Bayesian procedures and their substantial computational disadvantages is perhaps the greatest challenge facing modern Bayesian statistics, and is the primary motivation for the work presented here.

Two general strategies for scaling Bayesian inference are considered. The first is the development of methods that lend themselves to faster computation, and the second is design and characterization of computational algorithms that scale better in n or p. In the first instance, the focus is on joint inference outside of the standard problem of multivariate continuous data that has been a major focus of previous theoretical work in this area. In the second area, we pursue strategies for improving the speed of Markov chain Monte Carlo algorithms, and characterizing their performance in large-scale settings. Throughout, the focus is on rigorous theoretical evaluation combined with empirical demonstrations of performance and concordance with the theory.

One topic we consider is modeling the joint distribution of multivariate categorical data, often summarized in a contingency table. Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. In Chapter 2, we derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions.

Latent class models for the joint distribution of multivariate categorical, such as the PARAFAC decomposition, data play an important role in the analysis of population structure. In this context, the number of latent classes is interpreted as the number of genetically distinct subpopulations of an organism, an important factor in the analysis of evolutionary processes and conservation status. Existing methods focus on point estimates of the number of subpopulations, and lack robust uncertainty quantification. Moreover, whether the number of latent classes in these models is even an identified parameter is an open question. In Chapter 3, we show that when the model is properly specified, the correct number of subpopulations can be recovered almost surely. We then propose an alternative method for estimating the number of latent subpopulations that provides good quantification of uncertainty, and provide a simple procedure for verifying that the proposed method is consistent for the number of subpopulations. The performance of the model in estimating the number of subpopulations and other common population structure inference problems is assessed in simulations and a real data application.

In contingency table analysis, sparse data is frequently encountered for even modest numbers of variables, resulting in non-existence of maximum likelihood estimates. A common solution is to obtain regularized estimates of the parameters of a log-linear model. Bayesian methods provide a coherent approach to regularization, but are often computationally intensive. Conjugate priors ease computational demands, but the conjugate Diaconis--Ylvisaker priors for the parameters of log-linear models do not give rise to closed form credible regions, complicating posterior inference. In Chapter 4 we derive the optimal Gaussian approximation to the posterior for log-linear models with Diaconis--Ylvisaker priors, and provide convergence rate and finite-sample bounds for the Kullback-Leibler divergence between the exact posterior and the optimal Gaussian approximation. We demonstrate empirically in simulations and a real data application that the approximation is highly accurate, even in relatively small samples. The proposed approximation provides a computationally scalable and principled approach to regularized estimation and approximate Bayesian inference for log-linear models.

Another challenging and somewhat non-standard joint modeling problem is inference on tail dependence in stochastic processes. In applications where extreme dependence is of interest, data are almost always time-indexed. Existing methods for inference and modeling in this setting often cluster extreme events or choose window sizes with the goal of preserving temporal information. In Chapter 5, we propose an alternative paradigm for inference on tail dependence in stochastic processes with arbitrary temporal dependence structure in the extremes, based on the idea that the information on strength of tail dependence and the temporal structure in this dependence are both encoded in waiting times between exceedances of high thresholds. We construct a class of time-indexed stochastic processes with tail dependence obtained by endowing the support points in de Haan's spectral representation of max-stable processes with velocities and lifetimes. We extend Smith's model to these max-stable velocity processes and obtain the distribution of waiting times between extreme events at multiple locations. Motivated by this result, a new definition of tail dependence is proposed that is a function of the distribution of waiting times between threshold exceedances, and an inferential framework is constructed for estimating the strength of extremal dependence and quantifying uncertainty in this paradigm. The method is applied to climatological, financial, and electrophysiology data.

The remainder of this thesis focuses on posterior computation by Markov chain Monte Carlo. The Markov Chain Monte Carlo method is the dominant paradigm for posterior computation in Bayesian analysis. It has long been common to control computation time by making approximations to the Markov transition kernel. Comparatively little attention has been paid to convergence and estimation error in these approximating Markov Chains. In Chapter 6, we propose a framework for assessing when to use approximations in MCMC algorithms, and how much error in the transition kernel should be tolerated to obtain optimal estimation performance with respect to a specified loss function and computational budget. The results require only ergodicity of the exact kernel and control of the kernel approximation accuracy. The theoretical framework is applied to approximations based on random subsets of data, low-rank approximations of Gaussian processes, and a novel approximating Markov chain for discrete mixture models.

Data augmentation Gibbs samplers are arguably the most popular class of algorithm for approximately sampling from the posterior distribution for the parameters of generalized linear models. The truncated Normal and Polya-Gamma data augmentation samplers are standard examples for probit and logit links, respectively. Motivated by an important problem in quantitative advertising, in Chapter 7 we consider the application of these algorithms to modeling rare events. We show that when the sample size is large but the observed number of successes is small, these data augmentation samplers mix very slowly, with a spectral gap that converges to zero at a rate at least proportional to the reciprocal of the square root of the sample size up to a log factor. In simulation studies, moderate sample sizes result in high autocorrelations and small effective sample sizes. Similar empirical results are observed for related data augmentation samplers for multinomial logit and probit models. When applied to a real quantitative advertising dataset, the data augmentation samplers mix very poorly. Conversely, Hamiltonian Monte Carlo and a type of independence chain Metropolis algorithm show good mixing on the same dataset.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fitting statistical models is computationally challenging when the sample size or the dimension of the dataset is huge. An attractive approach for down-scaling the problem size is to first partition the dataset into subsets and then fit using distributed algorithms. The dataset can be partitioned either horizontally (in the sample space) or vertically (in the feature space), and the challenge arise in defining an algorithm with low communication, theoretical guarantees and excellent practical performance in general settings. For sample space partitioning, I propose a MEdian Selection Subset AGgregation Estimator ({\em message}) algorithm for solving these issues. The algorithm applies feature selection in parallel for each subset using regularized regression or Bayesian variable selection method, calculates the `median' feature inclusion index, estimates coefficients for the selected features in parallel for each subset, and then averages these estimates. The algorithm is simple, involves very minimal communication, scales efficiently in sample size, and has theoretical guarantees. I provide extensive experiments to show excellent performance in feature selection, estimation, prediction, and computation time relative to usual competitors.

While sample space partitioning is useful in handling datasets with large sample size, feature space partitioning is more effective when the data dimension is high. Existing methods for partitioning features, however, are either vulnerable to high correlations or inefficient in reducing the model dimension. In the thesis, I propose a new embarrassingly parallel framework named {\em DECO} for distributed variable selection and parameter estimation. In {\em DECO}, variables are first partitioned and allocated to m distributed workers. The decorrelated subset data within each worker are then fitted via any algorithm designed for high-dimensional problems. We show that by incorporating the decorrelation step, DECO can achieve consistent variable selection and parameter estimation on each subset with (almost) no assumptions. In addition, the convergence rate is nearly minimax optimal for both sparse and weakly sparse models and does NOT depend on the partition number m. Extensive numerical experiments are provided to illustrate the performance of the new framework.

For datasets with both large sample sizes and high dimensionality, I propose a new "divided-and-conquer" framework {\em DEME} (DECO-message) by leveraging both the {\em DECO} and the {\em message} algorithm. The new framework first partitions the dataset in the sample space into row cubes using {\em message} and then partition the feature space of the cubes using {\em DECO}. This procedure is equivalent to partitioning the original data matrix into multiple small blocks, each with a feasible size that can be stored and fitted in a computer in parallel. The results are then synthezied via the {\em DECO} and {\em message} algorithm in a reverse order to produce the final output. The whole framework is extremely scalable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

People go through their life making all kinds of decisions, and some of these decisions affect their demand for transportation, for example, their choices of where to live and where to work, how and when to travel and which route to take. Transport related choices are typically time dependent and characterized by large number of alternatives that can be spatially correlated. This thesis deals with models that can be used to analyze and predict discrete choices in large-scale networks. The proposed models and methods are highly relevant for, but not limited to, transport applications. We model decisions as sequences of choices within the dynamic discrete choice framework, also known as parametric Markov decision processes. Such models are known to be difficult to estimate and to apply to make predictions because dynamic programming problems need to be solved in order to compute choice probabilities. In this thesis we show that it is possible to explore the network structure and the flexibility of dynamic programming so that the dynamic discrete choice modeling approach is not only useful to model time dependent choices, but also makes it easier to model large-scale static choices. The thesis consists of seven articles containing a number of models and methods for estimating, applying and testing large-scale discrete choice models. In the following we group the contributions under three themes: route choice modeling, large-scale multivariate extreme value (MEV) model estimation and nonlinear optimization algorithms. Five articles are related to route choice modeling. We propose different dynamic discrete choice models that allow paths to be correlated based on the MEV and mixed logit models. The resulting route choice models become expensive to estimate and we deal with this challenge by proposing innovative methods that allow to reduce the estimation cost. For example, we propose a decomposition method that not only opens up for possibility of mixing, but also speeds up the estimation for simple logit models, which has implications also for traffic simulation. Moreover, we compare the utility maximization and regret minimization decision rules, and we propose a misspecification test for logit-based route choice models. The second theme is related to the estimation of static discrete choice models with large choice sets. We establish that a class of MEV models can be reformulated as dynamic discrete choice models on the networks of correlation structures. These dynamic models can then be estimated quickly using dynamic programming techniques and an efficient nonlinear optimization algorithm. Finally, the third theme focuses on structured quasi-Newton techniques for estimating discrete choice models by maximum likelihood. We examine and adapt switching methods that can be easily integrated into usual optimization algorithms (line search and trust region) to accelerate the estimation process. The proposed dynamic discrete choice models and estimation methods can be used in various discrete choice applications. In the area of big data analytics, models that can deal with large choice sets and sequential choices are important. Our research can therefore be of interest in various demand analysis applications (predictive analytics) or can be integrated with optimization models (prescriptive analytics). Furthermore, our studies indicate the potential of dynamic programming techniques in this context, even for static models, which opens up a variety of future research directions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This symposium describes a multi-dimensional strategy to examine fidelity of implementation in an authentic school district context. An existing large-district peer mentoring program provides an example. The presentation will address development of a logic model to articulate a theory of change; collaborative creation of a data set aligned with essential concepts and research questions; identification of independent, dependent, and covariate variables; issues related to use of big data that include conditioning and transformation of data prior to analysis; operationalization of a strategy to capture fidelity of implementation data from all stakeholders; and ways in which fidelity indicators might be used.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to become better prepared to support Research Data Management (RDM) practices in sciences and engineering, Queen’s University Library, together with the University Research Services, conducted a research study of all ranks of faculty members, as well as postdoctoral fellows and graduate students at the Faculty of Engineering & Applied Science, Departments of Chemistry, Computer Science, Geological Sciences and Geological Engineering, Mathematics and Statistics, Physics, Engineering Physics & Astronomy, School of Environmental Studies, and Geography & Planning in the Faculty of Arts and Science.