973 resultados para basic helix loop helix transcription factor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The slow/cardiac alkali myosin light chain (MLC1s/1c) is a member of a multigene family whose protein products are essential for activation of the myosin ATPase. In the adult, the MLC1s/1c isoform is expressed in both cardiac and slow-twitch skeletal muscles, while it is expressed by all skeletal muscles during development.^ To elucidate the molecular mechanisms that underlie the transcriptional regulation of MLC1s/1c gene expression, the immediate 5$\sp\prime$ flanking region of the gene was isolated and shown to be capable of directing reporter gene expression. Analysis of this region revealed a 110 bp muscle-specific enhancer that includes a myocyte-specific enhancer-binding factor 2 (MEF-2) site, E-boxes, which are potential binding sites for the basic-helix-loop-helix proteins such as MyoD, and a MLC box. The focus of the thesis was to identify the role of the MLC box in expression of the MLC1s/1c gene.^ The MLC box is a member of the family of CArG box containing cis-acting DNA elements. Mutagenesis showed that the MLC box is necessary, but not sufficient, for the expression of a reporter gene linked to the 5$\sp\prime$ flanking region of the MLC1s/1c gene. Linker scanner and site-directed mutagenesis identified a number of potential sites within the 110 bp muscle-specific enhancer that may cooperate with the MLC box. These are the MEF-2 site, the E-box site, and a 10 bp element located upstream of the MEF-2 site that does not have sequence similarity with any known cis-acting element. The MLC box is capable of binding to factors present in muscle nuclear extracts, as well as to human recombinant serum response factor (SRF). Binding of SRF to the MLC box was correlated with the ability of the 5$\sp\prime$ flanking region of the MLC1s/1c gene to drive reporter gene expression. Results suggest a model in which binding of SRF to the MLC box activates expression of the MLC1s/1c gene while binding of the factors present in the nuclear extracts suppresses the expression of the gene. (Abstract shortened with permission of author.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription factor VP1 regulates maturation and dormancy in plant seeds by activating genes responsive to the stress hormone abscisic acid (ABA). Although activation involves ABA-responsive elements (ABREs), VP1 itself does not specifically bind ABREs. Instead, we have identified and cloned a basic region leucine zipper (bZIP) factor, TRAB1, that interacts with both VP1 and ABREs. Transcription from a chimeric promoter with GAL4-binding sites was ABA-inducible if cells expressed a GAL4 DNA-binding domain∷TRAB1 fusion protein. Results indicate that TRAB1 is a true trans-acting factor involved in ABA-regulated transcription and reveal a molecular mechanism for the VP1-dependent, ABA-inducible transcription that controls maturation and dormancy in plant embryos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differentiation of trophoblast giant cells in the rodent placenta is accompanied by exit from the mitotic cell cycle and onset of endoreduplication. Commitment to giant cell differentiation is under developmental control, involving down-regulation of Id1 and Id2, concomitant with up-regulation of the basic helix-loop-helix factor Hxt and acquisition of increased adhesiveness. Endoreduplication disrupts the alternation of DNA synthesis and mitosis that maintains euploid DNA content during proliferation. To determine how the mammalian endocycle is regulated, we examined the expression of the cyclins and cyclin-dependent kinases during the transition from replication to endoreduplication in the Rcho-1 rat choriocarcinoma cell line. We cultured these cells under conditions that gave relatively synchronous endoreduplication. This allowed us to study the events that occur during the transition from the mitotic cycle to the first endocycle. With giant cell differentiation, the cells switched cyclin D isoform expression from D3 to D1 and altered several checkpoint functions, acquiring a relative insensitivity to DNA-damaging agents and a coincident serum independence. The initiation of S phase during endocycles appeared to involve cycles of synthesis of cyclins E and A, and termination of S was associated with abrupt loss of cyclin A and E. Both cyclins were absent from gap phase cells, suggesting that their degradation may be necessary to allow reinitiation of the endocycle. The arrest of the mitotic cycle at the onset of endoreduplication was associated with a failure to assemble cyclin B/p34cdk1 complexes during the first endocycle. In subsequent endocycles, cyclin B expression was suppressed. Together these data suggest several points at which cell cycle regulation could be targeted to shift cells from a mitotic to an endoreduplicative cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p300 and its family member, CREB-binding protein (CBP), function as key transcriptional coactivators by virtue of their interaction with the activated forms of certain transcription factors. In a search for additional cellular targets of p300/CBP, a protein-protein cloning strategy, surprisingly identified SRC-1, a coactivator involved in nuclear hormone receptor transcriptional activity, as a p300/CBP interactive protein. p300 and SRC-1 interact, specifically, in vitro and they also form complexes in vivo. Moreover, we show that SRC-1 encodes a new member of the basic helix-loop-helix-PAS domain family and that it physically interacts with the retinoic acid receptor in response to hormone binding. Together, these results implicate p300 as a component of the retinoic acid signaling pathway, operating, in part, through specific interaction with a nuclear hormone receptor coactivator, SRC-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have purified from hamster liver a second cysteine protease that cleaves and activates sterol regulatory element binding proteins (SREBPs). cDNA cloning revealed that this enzyme is the hamster equivalent of Mch3, a human enzyme that is related to the interleukin 1beta converting enzyme. We call this enzyme Mch3/SCA-2. It is 54% identical to hamster CPP32/SCA-1, a cysteine protease that was earlier shown to cleave SREBPs at a conserved Asp between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. This cleavage liberates an NH2-terminal fragment of approximately 460 amino acids that activates transcription of genes encoding the low density lipoprotein receptor and enzymes of cholesterol synthesis. Mch3/SCA-2 and CPP32/SCA-I are synthesized as inactive 30-35 kDa precursors that are thought to be cleaved during apoptosis to generate active fragments of approximately 20 and approximately 10 kDa. The current data lend further support to the notion that SREBPs are cleaved and activated as part of the program in programmed cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Pax5 transcription factor BSAP (B-cell-specific activator protein) is known to bind to and repress the activity of the immunoglobulin heavy chain 3' alpha enhancer. We have detected an element--designated alpha P--that lies approximately 50 bp downstream of the BSAP binding site 1 and is required for maximal enhancer activity. In vitro binding experiments suggest that the 40-kDa protein that binds to this element (NF-alpha P) is a member of the Ets family present in both B-cell and plasma-cell nuclei. However, in vivo footprint analysis suggests that the alpha P site is occupied only in plasma cells, whereas the BSAP site is occupied in B cells but not in plasma cells. When Pax5 binding to the enhancer in B cells was blocked in vivo by transfection with a triple-helix-forming oligonucleotide an alpha P footprint appeared and endogenous immunoglobulin heavy chain transcripts increased. The triple-helix-forming oligonucleotide also increased enhancer activity of a transfected construct in B cells, but only when the alpha P site was intact. Pax5 thus regulates the 3' alpha enhancer and immunoglobulin gene transcription by blocking activation by NF-alpha P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromosomal rearrangements involving band 12p13 are found in a wide variety of human leukemias but are particularly common in childhood acute lymphoblastic leukemia. The genes involved in these rearrangements, however, have not been identified. We now report the cloning of a t(12;21) translocation breakpoint involving 12p13 and 21q22 in two cases of childhood pre-B acute lymphoblastic leukemia, in which t(12;21) rearrangements were not initially apparent. The consequence of the translocation is fusion of the helix-loop-helix domain of TEL, an ETS-like putative transcription factor, to the DNA-binding and transactivation domains of the transcription factor AML1. These data show that TEL, previously shown to be fused to the platelet-derived growth factor receptor beta in chronic myelomonocytic leukemia, can be implicated in the pathogenesis of leukemia through its fusion to either a receptor tyrosine kinase or a transcription factor. The TEL-AML1 fusion also indicates that translocations affecting the AML1 gene can be associated with lymphoid, as well as myeloid, malignancy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant antibodies capable of sequence-specific interactions with nucleic acids represent a class of DNA- and RNA-binding proteins with potential for broad application in basic research and medicine. We describe the rational design of a DNA-binding antibody, Fab-Ebox, by replacing a variable segment of the immunoglobulin heavy chain with a 17-amino acid domain derived from TFEB, a class B basic helix-loop-helix protein. DNA-binding activity was studied by electrophoretic mobility-shift assays in which Fab-Ebox was shown to form a specific complex with DNA containing the TFEB recognition motif (CACGTG). Similarities were found in the abilities of TFEB and Fab-Ebox to discriminate between oligodeoxyribonucleotides containing altered recognition sequences. Comparable interference of binding by methylation of cytosine residues indicated that Fab-Ebox and TFEB both contact DNA through interactions along the major groove of double-stranded DNA. The results of this study indicate that DNA-binding antibodies of high specificity can be developed by using the modular nature of both immunoglobulins and transcription factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dioxin (aryl hydrocarbon) receptor is a ligand-dependent basic helix-loop-helix (bHLH) factor that binds to xenobiotic response elements of target promoters upon heterodimerization with the bHLH partner factor Arnt. Here we have replaced the bHLH motif of the dioxin receptor with a heterologous DNA-binding domain to create fusion proteins that mediate ligand-dependent transcriptional enhancement in yeast (Saccharomyces cerevisiae). Previously, our experiments indicated that the ligand-free dioxin receptor is stably associated with the 90-kDa heat shock protein, hsp90. To investigate the role of hsp90 in dioxin signaling we have studied receptor function in a yeast strain where hsp90 expression can be down-regulated to about 5% relative to wild-type levels. At low levels of hsp90, ligand-dependent activation of the chimeric dioxin receptor construct was almost completely inhibited, whereas the activity of a similar chimeric construct containing the structurally related Arnt factor was not affected. Moreover, a chimeric dioxin receptor construct lacking the central ligand- and hsp90-binding region of the receptor showed constitutive transcriptional activity in yeast that was not impaired upon down-regulation of hsp90 expression levels. Thus, these data suggest that hsp90 is a critical determinant of conditional regulation of dioxin receptor function in vivo via the ligand-binding domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Imprinting is an epigenetic mechanism that restrains the expression of about 100 genes to one allele depending on its parental origin. Several imprinted genes are implicated in neurodevelopmental brain disorders, such as autism, Angelman, and Prader-Willi syndromes. However, how expression of these imprinted genes is regulated during neural development is poorly understood. Here, using single and double KO animals for the transcription factors Neurogenin2 (Ngn2) and Achaete-scute homolog 1 (Ascl1), we found that the expression of a specific subset of imprinted genes is controlled by these proneural genes. Using in situ hybridization and quantitative PCR, we determined that five imprinted transcripts situated at the Dlk1-Gtl2 locus (Dlk1, Gtl2, Mirg, Rian, Rtl1) are upregulated in the dorsal telencephalon of Ngn2 KO mice. This suggests that Ngn2 influences the expression of the entire Dlk1-Gtl2 locus, independently of the parental origin of the transcripts. Interestingly 14 other imprinted genes situated at other imprinted loci were not affected by the loss of Ngn2. Finally, using Ngn2/Ascl1 double KO mice, we show that the upregulation of genes at the Dlk1-Gtl2 locus in Ngn2 KO animals requires a functional copy of Ascl1. Our data suggest a complex interplay between proneural genes in the developing forebrain that control the level of expression at the imprinted Dlk1-Gtl2 locus (but not of other imprinted genes). This raises the possibility that the transcripts of this selective locus participate in the biological effects of proneural genes in the developing telencephalon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The capacity of European pear fruit (Pyrus communis L.) to ripen after harvest develops during the final stages of growth on the tree. The objective of this study was to characterize changes in 'Bartlett' pear fruit physico-chemical properties and transcription profiles during fruit maturation leading to attainment of ripening capacity. Results: The softening response of pear fruit held for 14days at 20°C after harvest depended on their maturity. We identified four maturity stages: S1-failed to soften and S2- displayed partial softening (with or without ET-ethylene treatment); S3 - able to soften following ET; and S4 - able to soften without ET. Illumina sequencing and Trinity assembly generated 68,010 unigenes (mean length of 911bp), of which 32.8% were annotated to the RefSeq plant database. Higher numbers of differentially expressed transcripts were recorded in the S3-S4 and S1-S2 transitions (2805 and 2505 unigenes, respectively) than in the S2-S3 transition (2037 unigenes). High expression of genes putatively encoding pectin degradation enzymes in the S1-S2 transition suggests pectic oligomers may be involved as early signals triggering the transition to responsiveness to ethylene in pear fruit. Moreover, the co-expression of these genes with Exps (Expansins) suggests their collaboration in modifying cell wall polysaccharide networks that are required for fruit growth. K-means cluster analysis revealed that auxin signaling associated transcripts were enriched in cluster K6 that showed the highest gene expression at S3. AP2/EREBP (APETALA 2/ethylene response element binding protein) and bHLH (basic helix-loop-helix) transcripts were enriched in all three transition S1-S2, S2-S3, and S3-S4. Several members of Aux/IAA (Auxin/indole-3-acetic acid), ARF (Auxin response factors), and WRKY appeared to play an important role in orchestrating the S2-S3 transition. Conclusions: We identified maturity stages associated with the development of ripening capacity in 'Bartlett' pear, and described the transcription profile of fruit at these stages. Our findings suggest that auxin is essential in regulating the transition of pear fruit from being ethylene-unresponsive (S2) to ethylene-responsive (S3), resulting in fruit softening. The transcriptome will be helpful for future studies about specific developmental pathways regulating the transition to ripening. © 2015 Nham et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The c-myb gene is the cellular homologue of the v-myb oncogenes carried by the avian leukaemia viruses AMV and E26. It encodes a transcription factor (c-Myb), as does each of the viral oncogenes, which recognises the core DNA sequence C/T-A-A-C-G/T-G via a repeated helix-turn-helix-like motif. c-myb is expressed in immature haemopoietic cells, as well as immature cells of the gastro-intestinal epithelium and is down-regulated with differentiation. Enforced expression of activated or even normal forms of Myb can transform haemopoietic cells, most often of the myeloid lineage, in vitro and in vivo. Although many genes have been identified which are likely to be regulated by c-Myb, the critical target genes involved in Myb's transforming activity are not known. Together with data showing increased c-myb expression in colonic tumours, these observations raise the possibility that c-myb may play a role in human malignant disease. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic Acid Research (2007) Vol.37 N. 14 4755-4766

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously demonstrated that the bZIP transcription factor CREB-2, also called ATF-4, trans-activates, in association with the viral protein Tax, the human T-cell leukemia virus type I (HTLV-I) promoter. In this study, we have examined whether CREB-2 acetylation affects transcriptional activation mediated by Tax. We present evidence that CREB-2 is acetylated in vitro and in vivo. CREB-2 is acetylated in two regions: the basic domain of the bZIP (from amino acid residue 270 to 300) and the short basic domain (from 342 to 351) located downstream from the bZIP. We also demonstrate that CREB-2 is acetylated by p300/CBP but not by p/CAF. Moreover, replacement of lysine by arginine in the basic domains decreases the trans-activating capacity of CREB-2. However, in the presence of Tax, the HTLV-I transcription remains fully activated by these CREB-2 mutants. Although we cannot totally exclude that the mutations could also affect CREB-2 structure and activity independent of acetylation, our results suggest that activation of the viral promoter in the presence of Tax is independent of the CREB-2 acetylation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By interacting with MHC class II molecules, CD4 facilitates lineage development as well as activation of Th cells. Expression of physiological levels of CD4 requires a proximal CD4 enhancer to stimulate basic CD4 promoter activity. T cell factor (TCF)-1/beta-catenin pathway has previously been shown to regulate thymocyte survival via up-regulating antiapoptotic molecule Bcl-xL. By both loss and gain of function studies, in this study we show additional function of TCF-1/beta-catenin pathway in the regulation of CD4 expression in vivo. Mice deficient in TCF-1 displayed significantly reduced protein and mRNA levels of CD4 in CD4+ CD8+ double-positive (DP) thymocytes. A transgene encoding Bcl-2 restored survival but not CD4 levels of TCF-1(-/-) DP cells. Thus, TCF-1-regulated survival and CD4 expression are two separate events. In contrast, CD4 levels were restored on DP TCF-1(-/-) cells by transgenic expression of a wild-type TCF-1, but not a truncated TCF-1 that lacks a domain required for interacting with beta-catenin. Furthermore, forced expression of a stabilized beta-catenin, a coactivator of TCF-1, resulted in up-regulation of CD4. TCF-1 or stabilized beta-catenin greatly stimulated activity of a CD4 reporter gene driven by a basic CD4 promoter and the CD4 enhancer. However, mutation of a potential TCF binding site located within the enhancer abrogated TCF-1 and beta-catenin-mediated activation of CD4 reporter. Finally, recruitment of TCF-1 to CD4 enhancer was detected in wild-type but not TCF-1 null mice by chromatin-immunoprecipitation analysis. Thus, our results demonstrated that TCF/beta-catenin pathway enhances CD4 expression in vivo by recruiting TCF-1 to stimulate CD4 enhancer activity.