928 resultados para ambient incubation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Addressing current limitations of state-of-the-art instrumentation in aerosol research, the aim of this work was to explore and assess the applicability of a novel soft ionization technique, namely flowing atmospheric-pressure afterglow (FAPA), for the mass spectrometric analysis of airborne particulate organic matter. Among other soft ionization methods, the FAPA ionization technique was developed in the last decade during the advent of ambient desorption/ionization mass spectrometry (ADI–MS). Based on a helium glow discharge plasma at atmospheric-pressure, excited helium species and primary reagent ions are generated which exit the discharge region through a capillary electrode, forming the so-called afterglow region where desorption and ionization of the analytes occurs. Commonly, fragmentation of the analytes during ionization is reported to occur only to a minimum extent, predominantly resulting in the formation of quasimolecular ions, i.e. [M+H]+ and [M–H]– in the positive and the negative ion mode, respectively. Thus, identification and detection of signals and their corresponding compounds is facilitated in the acquired mass spectra. The focus of the first part of this study lies on the application, characterization and assessment of FAPA–MS in the offline mode, i.e. desorption and ionization of the analytes from surfaces. Experiments in both positive and negative ion mode revealed ionization patterns for a variety of compound classes comprising alkanes, alcohols, aldehydes, ketones, carboxylic acids, organic peroxides, and alkaloids. Besides the always emphasized detection of quasimolecular ions, a broad range of signals for adducts and losses was found. Additionally, the capabilities and limitations of the technique were studied in three proof-of-principle applications. In general, the method showed to be best suited for polar analytes with high volatilities and low molecular weights, ideally containing nitrogen- and/or oxygen functionalities. However, for compounds with low vapor pressures, containing long carbon chains and/or high molecular weights, desorption and ionization is in direct competition with oxidation of the analytes, leading to the formation of adducts and oxidation products which impede a clear signal assignment in the acquired mass spectra. Nonetheless, FAPA–MS showed to be capable of detecting and identifying common limonene oxidation products in secondary OA (SOA) particles on a filter sample and, thus, is considered a suitable method for offline analysis of OA particles. In the second as well as the subsequent parts, FAPA–MS was applied online, i.e. for real time analysis of OA particles suspended in air. Therefore, the acronym AeroFAPA–MS (i.e. Aerosol FAPA–MS) was chosen to refer to this method. After optimization and characterization, the method was used to measure a range of model compounds and to evaluate typical ionization patterns in the positive and the negative ion mode. In addition, results from laboratory studies as well as from a field campaign in Central Europe (F–BEACh 2014) are presented and discussed. During the F–BEACh campaign AeroFAPA–MS was used in combination with complementary MS techniques, giving a comprehensive characterization of the sampled OA particles. For example, several common SOA marker compounds were identified in real time by MSn experiments, indicating that photochemically aged SOA particles were present during the campaign period. Moreover, AeroFAPA–MS was capable of detecting highly oxidized sulfur-containing compounds in the particle phase, presenting the first real-time measurements of this compound class. Further comparisons with data from other aerosol and gas-phase measurements suggest that both particulate sulfate as well as highly oxidized peroxyradicals in the gas phase might play a role during formation of these species. Besides applying AeroFAPA–MS for the analysis of aerosol particles, desorption processes of particles in the afterglow region were investigated in order to gain a more detailed understanding of the method. While during the previous measurements aerosol particles were pre-evaporated prior to AeroFAPA–MS analysis, in this part no external heat source was applied. Particle size distribution measurements before and after the AeroFAPA source revealed that only an interfacial layer of OA particles is desorbed and, thus, chemically characterized. For particles with initial diameters of 112 nm, desorption radii of 2.5–36.6 nm were found at discharge currents of 15–55 mA from these measurements. In addition, the method was applied for the analysis of laboratory-generated core-shell particles in a proof-of-principle study. As expected, predominantly compounds residing in the shell of the particles were desorbed and ionized with increasing probing depths, suggesting that AeroFAPA–MS might represent a promising technique for depth profiling of OA particles in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Standard methods for the estimation of the postmortem interval (PMI, time since death), based on the cooling of the corpse, are limited to about 48 h after death. As an alternative, noninvasive postmortem observation of alterations of brain metabolites by means of (1)H MRS has been suggested for an estimation of the PMI at room temperature, so far without including the effect of other ambient temperatures. In order to study the temperature effect, localized (1)H MRS was used to follow brain decomposition in a sheep brain model at four different temperatures between 4 and 26°C with repeated measurements up to 2100 h postmortem. The simultaneous determination of 25 different biochemical compounds at each measurement allowed the time courses of concentration changes to be followed. A sudden and almost simultaneous change of the concentrations of seven compounds was observed after a time span that decreased exponentially from 700 h at 4°C to 30 h at 26°C ambient temperature. As this represents, most probably, the onset of highly variable bacterial decomposition, and thus defines the upper limit for a reliable PMI estimation, data were analyzed only up to this start of bacterial decomposition. As 13 compounds showed unequivocal, reproducible concentration changes during this period while eight showed a linear increase with a slope that was unambiguously related to ambient temperature. Therefore, a single analytical function with PMI and temperature as variables can describe the time courses of metabolite concentrations. Using the inverse of this function, metabolite concentrations determined from a single MR spectrum can be used, together with known ambient temperatures, to calculate the PMI of a corpse. It is concluded that the effect of ambient temperature can be reliably included in the PMI determination by (1)H MRS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Backcalculation is the primary method used to reconstruct past human immunodeficiency virus (HIV) infection rates, to estimate current prevalence of HIV infection, and to project future incidence of acquired immunodeficiency syndrome (AIDS). The method is very sensitive to uncertainty about the incubation period. We estimate incubation distributions from three sets of cohort data and find that the estimates for the cohorts are substantially different. Backcalculations employing the different estimates produce equally good fits to reported AIDS counts but quite different estimates of cumulative infections. These results suggest that the incubation distribution is likely to differ for different populations and that the differences are large enough to have a big impact on the resulting estimates of HIV infection rates. This seriously limits the usefulness of backcalculation for populations (such as intravenous drug users, heterosexuals, and women) that lack precise information on incubation times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze three sets of doubly-censored cohort data on incubation times, estimating incubation distributions using semi-parametric methods and assessing the comparability of the estimates. Weibull models appear to be inappropriate for at least one of the cohorts, and the estimates for the different cohorts are substantially different. We use these estimates as inputs for backcalculation, using a nonparametric method based on maximum penalized likelihood. The different incubations all produce fits to the reported AIDS counts that are as good as the fit from a nonstationary incubation distribution that models treatment effects, but the estimated infection curves are very different. We also develop a method for estimating nonstationarity as part of the backcalculation procedure and find that such estimates also depend very heavily on the assumed incubation distribution. We conclude that incubation distributions are so uncertain that meaningful error bounds are difficult to place on backcalculated estimates and that backcalculation may be too unreliable to be used without being supplemented by other sources of information in HIV prevalence and incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many preanalytical variables affect the results of coagulation assays. A possible way to control some of them would be to accept blood specimens shipped in the original collection tube. The aim of our study was to investigate the stability of coagulation assays in citrated whole blood transported at ambient temperature for up to two days after specimen collection. Blood samples from 59 patients who attended our haematology outpatient ward for thrombophilia screening were transported at ambient temperature (outdoor during the day, indoor overnight) for following periods of time: <1 hour, 4-6, 8-12, 24-28 and 48-52 hours prior to centrifugation and plasma-freezing. The following coagulation tests were performed: PT, aPTT, fibrinogen, FII:C, FV:C, FVII:C, FVIII:C, FIX:C, FX:C, FXI:C, VWF:RCo, VWF:Ag, AT, PC activity, total and free PS antigen, modified APC-sensitivity-ratio, thrombin-antithrombin-complex and D-dimer. Clinically significant changes, defined as a percentage change of more than 10% from the initial value, were observed for FV:C, FVIII:C and total PS antigen starting at 24-28 hours, and for PT, aPTT and FVII:C at 48-52 hours. No statistically significant differences were seen for fibrinogen, antithrombin, or thrombin-antithrombin complexes (Friedman repeated measures analysis of variance). The present data suggest that the use of whole blood samples transported at ambient temperature may be an acceptable means of delivering specimens for coagulation analysis. With the exception of factor V and VIII coagulant activity, and total PS antigen all investigated parameters can be measured 24-28 hours after specimen collection without observing clinically relevant changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide (CO2) capture and storage experiments were conducted at ambient conditions in varying weight % sodium carbonate (Na2CO3) solutions. Experiments were conducted to determine the optimal amount of Na2CO3 in solution for CO2 absorption. It was concluded that a 2% Na2CO3 solution, by weight, was the most efficient solution. The 2% Na2CO3 solution is able to absorb 0.5 g CO2/g Na2CO3. These results led to studies to determine how the gas bubble size affected carbon dioxide absorption in the solution. Studies were conducted using ASTM porosity gas diffusers to vary the bubble size. Gas diffusers with porosities of fine, medium, and extra coarse were used. Results found that the medium porosity gas diffuser was the most efficient at absorbing CO2 at 50%. Variation in the bubble size concluded that absorption of carbon dioxide into the sodium carbonate solution does depend on the bubble size, thus is mass transfer limited. Once the capture stage was optimized (amount of Na2CO3 in solution and bubble size), the next step was to determine if carbon dioxide could be stored as a calcium carbonate mineral using calcium rich industrial waste and if the sodium carbonate solution could be simultaneously regenerated. Studies of CO2 sequestration at ambient conditions have shown that it is possible to permanently sequester CO2 in the form of calcium carbonate using a calcium rich industrial waste. Studies have also shown that it is possible to regenerate a fraction of the sodium carbonate solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atmospheric aerosol water-soluble organic compounds (WSOC) exist in a complex mixture of thousands of organic compounds which may have a significant influence on the climate-relevant properties of the atmospheric aerosol. To understand the potential influences, the ambient aerosol was collected at a nonurban mountainous site near Steamboat Springs, CO. The WSOC fraction was analyzed using positive and negative electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 2400 and 4000 molecular formulas were identified from the detected positive and negative ions, respectively. The formulas contained carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) atoms over the mass range of 100-800 Da in both ionization modes. The number range of double bond equivalents (DBE), the mean O:C, H:C, and oxidation state of carbon for the positive ions were 0 – 18, 0.25 ± 0.15, 1.39 ± 0.29, and -0.89 ± 0.23, respectively. Comparatively, the negative ion values were 0 – 14, 0.53 ± 0.20, 1.48 ± 0.30, and -0.41 ± 0.45, respectively. Overall, the positive ion molecular formulas were less oxygenated than negative ions as seen with the lower O:C and OSc values. Molecular formulas of the positive ions classified as aliphatic, olefinic, and aromatic compound classes based on the aromaticity index values. Aliphatic compounds were the CHNO and CHO formulas that had mean DBE values of about 5 and 3, respectively. However, a majority of the CHOS, CHNOS, and CHS formulas were defined as olefinic compounds and had mean DBE values of about 12, 13, and 10, respectively. Overall, more than half of the assigned molecular formulas contained sulfur and were olefinic to aromatic compounds with a DBE range of 7-18. Source of the unsaturated sulfur containing compounds is currently unknown. Several nitrogen containing compounds were in common with the field and laboratory studies of the biomass burning aerosol and aged secondary organic aerosol products of the limonene ozonolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funded by the US-EU Atlantis Program, the International Cooperation in Ambient Computing Education Project is establishing an international knowledge-building community for developing a broader computer science curriculum aimed at preparing students for real-world problems in a multidisciplinary, global world. The project is collaboration among Troy University (USA), University of Sunderland (UK), FernUniversität in Hagen (Germany), Universidade do Algarve (Portugal), University of Arkansas at Little Rock (USA) and San Diego State University (USA). The curriculum will include aspects of social science, cognitive science, human-computer interaction, organizational studies, global studies, and particular application areas as well as core computer science subjects. Programs offered at partner institutions will form trajectories through the curriculum. A degree will be defined in terms of combinations of trajectories which will satisfy degree requirements set by accreditation organizations. This is expected to lead to joint- or dual-degree programs among the partner institutions in the future. This paper describes the goals and activities of the project and discusses implementation issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 222Radon tracer method is a powerful tool to estimate local and regional surface emissions of, e.g., greenhouse gases. In this paper we demonstrate that in practice, the method as it is commonly used, produces inaccurate results in case of nonhomogeneously spread emission sources, and we propose a different approach to account for this. We have applied the new methodology to ambient observations of CO2 and 222Radon to estimate CO2 surface emissions for the city of Bern, Switzerland. Furthermore, by utilizing combined measurements of CO2 and δ(O2/N2) we obtain valuable information about the spatial and temporal variability of the main emission sources. Mean net CO2 emissions based on 2 years of observations are estimated at (11.2 ± 2.9) kt km−2 a−1. Oxidative ratios indicate a significant influence from the regional biosphere in summer/spring and fossil fuel combustion processes in winter/autumn. Our data indicate that the emissions from fossil fuels are, to a large degree, related to the combustion of natural gas which is used for heating purposes.