996 resultados para Zero current switching (ZCS) converters
Resumo:
Novel current density mapping (CDM) schemes are developed for the design of new actively shielded, clinical magnetic resonance imaging (MRI) magnets. This is an extended inverse method in which the entire potential solution space for the superconductors has been considered, rather than single current density layers. The solution provides an insight into the required superconducting coil pattern for a desired magnet configuration. This information is then used as an initial set of parameters for the magnet structure, and a previously developed hybrid numerical optimization technique is used to obtain the final geometry of the magnet. The CDM scheme is applied to the design of compact symmetric, asymmetric, and open architecture 1.0-1.5 T MRI magnet systems of novel geometry and utility. A new symmetric 1.0-T system that is just I m in length with a full 50-cm diameter of the active, or sensitive, volume (DSV) is detailed, as well as an asymmetric system in which a 50-cm DSV begins just 14 cm from the end of the coil structure. Finally a 1.0-T open magnet system with a full 50-cm DSV is presented. These new designs provide clinically useful homogeneous regions and have appropriately restricted stray fields but, in some of the designs, the DSV is much closer to the end of the magnet system than in conventional designs. These new designs have the potential to reduce patient claustrophobia and improve physician access to patients undergoing scans. (C) 2002 Wiley Periodicals, Inc.
Resumo:
If the cestodes are excluded, then the parasitic platyhelminths of fishes divide neatly into the external and monoxenous Monogenea and the internal and heteroxenous Digenea. Both groups have apparently had long associations of coevolution, host switching and adaptation with fishes and have become highly successful in their respective habitats. Current estimates of species richness for the two groups suggest that they may be remarkably similar. Here we consider the nature of the diversity of the Monogenea. and Digenea of fishes in terms of richness of species and higher taxa to determine what processes may be responsible for observed differences. The Monogenea includes at least two super-genera (Dactylogyrus and Gyrodactylus) each of which has hundreds of species, no comparable genera are found in the Digenea. Possible reasons for this difference include the higher host specificity of monogeneans and their shorter generation Lime. If allowance is made for the vagaries of taxonomic 'lumping' and 'splitting', then there are probably comparable numbers of families of monogeneans and digeneans in fishes. However, the nature of the families differ profoundly. Richness in higher taxa (families) in the Digenea is explicable in terms of processes that appear to have been unimportant in the Monogenea. Readily identifiable sources of diversity in the Digenea are: recolonisation of fishes by taxa that arose in association with tetrapods; adoption of new sites within hosts; adoption of new diets and feeding mechanisms; adaptations relating to the exploitation of ecologically similar groups of fishes and second intermediate hosts; and adaptations relating to the exploitation of phylogenetic lineages of molluscs. In contrast, most higher- level monogenean diversity (other than that associated with the subclasses) relates principally to morphological specialisation for attachment by the haptor. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A dictum long-held has stated that the adult mammalian brain and spinal cord are not capable of regeneration after injury. Recent discoveries have, however, challenged this dogma. In particular, a more complete understanding of developmental neurobiology has provided an insight into possible ways in which neuronal regeneration in the central nervous system may be encouraged. Knowledge of the role of neurotrophic factors has provided one set of strategies which may be useful in enhancing CNS regeneration. These factors can now even be delivered to injury sites by transplantation of genetically modified cells. Another strategy showing great promise is the discovery and isolation of neural stem cells from adult CNS tissue. It may become possible to grow such cells in the laboratory and use these to replace injured or dead neurons. The biological and cellular basis of neural injury is of special importance to neurosurgery, particularly as therapeutic options to treat a variety of CNS diseases becomes greater. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Many granulation plants operate well below design capacity, suffering from high recycle rates and even periodic instabilities. This behaviour cannot be fully predicted using the present models. The main objective of the paper is to provide an overview of the current status of model development for granulation processes and suggest future directions for research and development. The end-use of the models is focused on the optimal design and control of granulation plants using the improved predictions of process dynamics. The development of novel models involving mechanistically based structural switching methods is proposed in the paper. A number of guidelines are proposed for the selection of control relevant model structures. (C) 2002 Published by Elsevier Science B.V.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
In 1851, Theodor Bilharz described a parasitic infection (bilharzia) that would later be termed schistosomiasis. Currently, 200 million people in 74 countries have this disease; 120 million of them have symptoms, and 20 million have severe illness.1 Schistosomiasis is caused by parasitic trematode worms (schistosomes) that reside in the abdominal veins of their vertebrate definitive hosts. The life cycle of the schistosome is depicted in Figure 1. Schistosomiasis is 1 of the 10 tropical diseases especially targeted for control by the Special Program for Research and Training in Tropical Diseases of the United Nations Development Program, the World Bank, . . . [Full Text of this Article]