936 resultados para Yield Strength
Resumo:
The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.
Resumo:
Use of appropriate nursery environments will maximize gain from selection for yield of wheat (Triticum aestivum L.) in the target population of environments of a breeding program. The objective of this study was to investigate how well-irrigated (low-stress) nursery environments predict yield of lines in target environments that varied in degree of water limitation. Fifteen lines were sampled from the preliminary yield evaluation stage of the Queensland wheat breeding program and tested in 26 trials under on-farm conditions (Target Environments) across nine years (1985 to 1993) and also in 27 trials conducted at three research stations (Nursery Environments) in three years (1987 to 1989). The nursery environments were structured to impose different levels of water and nitrogen (N) limitation, whereas the target environments represented a random sample of on-farm conditions from the target population of environments. Indirect selection and pattern analysis methods were used to investigate selection for yield in the nursery environments and gain from selection in the target environments. Yield under low-stress nursery conditions was an effective predictor of yield under similar low-stress target environments (r = 0.89, P < 0.01). However, the value of the low-stress nursery as a predictor of yield in the water-limited target environments decreased with increasing water stress (moderate stress r = 0.53, P < 0.05, to r = 0.38, P > 0.05; severe stress r = -0.08, P > 0.05). Yield in the stress nurseries was a poor predictor of yield in the target environments. Until there is a clear understanding of the physiological-genetic basis of variation for adaptation of wheat to the water-limited environments in Queensland, yield improvement can best be achieved by selection for a combination of yield potential in an irrigated low-stress nursery and yield in on-farm trials that sample the range of water-limited environments of the target population of environments.
Resumo:
Information on the variation available for different plant attributes has enabled germplasm collections to be effectively utilised in plant breeding. A world sourced collection of white clover germplasm has been developed at the White Clover Resource Centre at Glen Innes, New South Wales. This collection of 439 accessions was characterised under field conditions as a preliminary study of the genotypic variation for morphological attributes; stolon density, stolon branching, number of nodes. number of rooted nodes, stolon thickness, internode length, leaf length, plant height and plant spread, together with seasonal herbage yield. Characterisation was conducted on different batches of germplasm (subsets of accessions taken from the complete collection) over a period of five years. Inclusion of two check cultivars, Haifa and Huia, in each batch enabled adjustment of the characterisation data for year effects and attribute-by-year interaction effects. The component of variance for seasonal herbage yield among batches was large relative to that for accessions. Accession-by-experiment and accession-by-season interactions for herbage yield were not detected. Accession mean repeatability for herbage yield across seasons was intermediate (0.453). The components of genotypic variance among accessions for all attributes, except plant height, were larger than their respective standard errors. The estimates of accession mean repeatability for the attributes ranged from low (0.277 for plant height) to intermediate (0.544 for internode length). Multivariate techniques of clustering and ordination were used to investigate the diversity present among the accessions in the collection. Both cluster analysis and principal component analysis suggested that seven groups of accessions existed. It was also proposed from the pattern analysis results that accessions from a group characterised by large leaves, tall plants and thick stolons could be crossed with accessions from a group that had above average stolon density and stolon branching. This material could produce breeding populations to be used in recurrent selection for the development of white clover cultivars for dryland summer moisture stress environments in Australia. The germplasm collection was also found to be deficient in genotypes with high stolon density, high number of branches high number of rooted nodes and large leaves. This warrants addition of new germplasm accessions possessing these characteristics to the present germplasm collection.
Resumo:
A simple, fast and low-cost atmospheric-pressure chemical vapor deposition technique is developed to synthesize high-yield carbon nanocoils (CNCs) using amorphous Co–P alloy as catalyst and thiophene as nucleation agent. The uniform catalyst pattern with the mean particle size of 350 nm was synthesized using a simple electroless plating process. This uniformity of the Co–P nanoparticles results in a high yield, very uniform size/shape distribution and regular structure of CNCs at the optimum growth temperature of 800 ◦C. The yield of CNCs reaches ∼76%; 70% of the CNCs have fiber diameters approximately 250 nm. The CNC coil diameters and lengths are 450–550nm and 0.5–2mm, respectively. The CNC nucleation and growth mechanism are also discussed.
Resumo:
Cold-formed steel members are widely used in residential, industrial and commercial buildings as primary load-bearing elements. During fire events, they will be exposed to elevated temperatures. If the general appearance of the structure is satisfactory after a fire event then the question that has to be answered is how the load bearing capacity of cold-formed steel members in these buildings has been affected. Hence after such fire events there is a need to evaluate the residual strength of these members. However, the post-fire behaviour of cold-formed steel members has not been investigated in the past. This means conservative decisions are likely to be made in relation to fire exposed cold-formed steel buildings. Therefore an experimental study was undertaken to investigate the post-fire mechanical properties of cold-formed steels. Tensile coupons taken from cold-formed steel sheets of three different steel grades and thicknesses were exposed to different elevated temperatures up to 800 oC, and were then allowed to cool down to ambient temperature before they were tested to failure. Tensile coupon tests were conducted to obtain their post-fire stress-strain curves and associated mechanical properties (yield stress, Young’s modulus, ultimate strength and ductility). It was found that the post-fire mechanical properties of cold-formed steels are reduced below the original ambient temperature mechanical properties if they had been exposed to temperatures exceeding 300 oC. Hence a new set of equations is proposed to predict the post-fire mechanical properties of cold-formed steels. Such post-fire mechanical property assessments allow structural and fire engineers to make an accurate prediction of the safety of fire exposed cold-formed steel buildings. This paper presents the details of this experimental study and the results of post-fire mechanical properties of cold-formed steels. It also includes the results of a post-fire evaluation of cold-formed steel walls.
Resumo:
Purpose Is eccentric hamstring strength and between limb imbalance in eccentric strength, measured during the Nordic hamstring exercise, a risk factor for hamstring strain injury (HSI)? Methods Elite Australian footballers (n=210) from five different teams participated. Eccentric hamstring strength during the Nordic was taken at the commencement and conclusion of preseason training and in season. Injury history and demographic data were also collected. Reports on prospectively occurring HSIs were completed by team medical staff. Relative risk (RR) was determined for univariate data and logistic regression was employed for multivariate data. Results Twenty-eight HSIs were recorded. Eccentric hamstring strength below 256N at the start of preseason and 279N at the end of preseason increased risk of future HSI 2.7 (relative risk, 2.7; 95% confidence interval, 1.3 to 5.5; p = 0.006) and 4.3 fold (relative risk, 4.3; 95% confidence interval, 1.7 to 11.0; p = 0.002) respectively. Between limb imbalance in strength of greater than 10% did not increase the risk of future HSI. Univariate analysis did not reveal a significantly greater relative risk for future HSI in athletes who had sustained a lower limb injury of any kind within the last 12 months. Logistic regression revealed interactions between both athlete age and history of HSI with eccentric hamstring strength, whereby the likelihood of future HSI in older athletes or athletes with a history of HSI was reduced if an athlete had high levels of eccentric strength. Conclusion Low levels of eccentric hamstring strength increased the risk of future HSI. Interaction effects suggest that the additional risk of future HSI associated with advancing age or previous injury was mitigated by higher levels of eccentric hamstring strength.
Resumo:
Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings will be exposed to elevated temperatures. Hence after such events there is a need to evaluate the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel sections. This means conservative decisions are often made in relation to fire exposed building structures. This research is aimed at investigating the buckling capacities of fire exposed cold-formed lipped channel steel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were first exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperatures before they were tested to failure. Similarly tensile coupon tests were also undertaken after being exposed to various elevated temperatures, from which the residual mechanical properties (yield stress and Young’s modulus) of the steels used in this study were derived. Using these mechanical properties, the residual compression capacities of tested short columns were predicted using the currently used design rules in AS/NZS 4600 and AISI cold-formed steel standards. This comparison showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of fire exposed buildings. This paper presents the details of this experimental study and the results.
Resumo:
Cold-formed steel members have many advantages over hot-rolled steel members. However, they are susceptible to various buckling modes at stresses below the yield stress of the member because of their relatively high width-to-thickness ratio. Web crippling is one of the failure modes that can occur when the members are subjected to transverse high concentrated loadings and/or reactions. The four common loading conditions are the end-one-flange (EOF), interior-one-flange (IOF), end-two-flange (ETF) and interior-two-flange (ITF) loadings. Recently a new test method has been proposed by AISI to obtain the web crippling capacities under these four loading conditions. Using this test method 38 tests were conducted in this research to investigate the web crippling behaviour and strength of channel beams under ETF and ITF cases. Unlipped channel sections having a nominal yield stress of 450 MPa were tested with different web slenderness and bearing lengths. The flanges of these channel sections were not fastened to the supports. In this research the suitability of the current design rules in AS/NZS 4600 and the AISI S100 Specification for unlipped channels subject to web crippling was investigated, and suitable modifications were proposed where necessary. In addition to this, a new design rule was proposed based on the direct strength method to predict the web crippling capacities of tested beams. This paper presents the details of this experimental study and the results.
Resumo:
Graphyne is an allotrope of graphene. The mechanical properties of graphynes (α-, β-, γ- and 6,6,12-graphynes) under uniaxial tension deformation at different temperatures and strain rates are studied using molecular dynamics simulations. It is found that graphynes are more sensitive to temperature changes than graphene in terms of fracture strength and Young's modulus. The temperature sensitivity of the different graphynes is proportionally related to the percentage of acetylenic linkages in their structures, with the α-graphyne (having 100% of acetylenic linkages) being most sensitive to temperature. For the same graphyne, temperature exerts a more pronounced effect on the Young's modulus than fracture strength, which is different from that of graphene. The mechanical properties of graphynes are also sensitive to strain rate, in particular at higher temperatures.
Resumo:
Background Hamstring strain injuries (HSIs) are the most common injury type in Australian football and the rate of recurrence has been consistently high for a number of years. Long lasting neuromuscular inhibition has been noted in previously injured athletes but it is not known if this influences athletes adaptive response to training. Purpose To determine if elite Australian footballers with a prior unilateral HSI (previously injured group) display lesser improvements in eccentric hamstring strength during pre-season training compared to athletes without a history of HSI (control group). Study design Prospective cohort study. Methods Ninety-nine elite Australian footballers participated (17 with a history of unilateral HSI in the previous 12 month period). Eccentric hamstring strength was assessed at the start and end of pre-season training using an instrumented Nordic hamstring device. Change in eccentric strength across preseason was determine in absolute terms and normalised to start of preseason strength. Start of preseason strength was used as a covariate to control for differences in starting strength. Results The left and right limbs in the control group showed no difference in absolute or relative change (left limb absolute change, 60.7±72.9N; relative change, 1.28±0.34; right limb absolute change, 48.6±83.8N; relative change, 1.24±0.43) . Similarly, the injured and uninjured limbs from the previously injured group showed no difference for either absolute or relative measures of change (injured limb absolute change, 13.1±57.7N; relative change, 1.07±0.18; uninjured limb absolute change, 14.7±54.0N; relative change, 1.07±0.22N). The previously injured group displayed a significantly lesser increase in eccentric hamstring strength across the preseason (absolute change, 13.9±55.0; relative change, 1.07±0.20) compared to the control group (absolute change, 54.6±78.5; relative change, 1.26±0.39) for both absolute and relative measures (p < 0.001), even after controlling for differences in start of pre-season eccentric hamstring strength, which had a significant effect on strength improvement. Conclusion Elite Australian footballers with a unilateral HSI history displayed lesser improvements in eccentric hamstring strength across preseason training. The smaller improvements were not restricted to the previously injured limb as the contralateral limb also displayed similarly small improvements in eccentric strength. Whether this is the cause of or the result of injury remains to be seen, but it has the potential to contribute to the risk of hamstring strain re-injury.
Resumo:
The synthesis of a novel class of antioxidants, namely pyridine annulated heterocyclic nitroxides has been investigated. Two analogues were developed that differed in the structure around the free radical nitroxide. The isolation and characterisation of several side products formed in the reactions gave insight into the reaction mechanism. These findings were exploited in order to improve the overall synthetic yield of the reaction.
Resumo:
The effects of reductions in cell wall lignin content, manifested by RNA interference suppression of coumaroyl 3'-hydroxylase, on plant growth, water transport, gas exchange, and photosynthesis were evaluated in hybrid poplar trees (Populus alba 3 grandidentata). The growth characteristics of the reduced lignin trees were significantly impaired, resulting in smaller stems and reduced root biomass when compared to wild-type trees, as well as altered leaf morphology and architecture. The severe inhibition of cell wall lignification produced trees with a collapsed xylem phenotype, resulting in compromised vascular integrity, and displayed reduced hydraulic conductivity and a greater susceptibility to wall failure and cavitation. In the reduced lignin trees, photosynthetic carbon assimilation and stomatal conductance were also greatly reduced, however, shoot xylem pressure potential and carbon isotope discrimination were higher and water-use efficiency was lower, inconsistent with water stress. Reductions in assimilation rate could not be ascribed to increased stomatal limitation. Starch and soluble sugars analysis of leaves revealed that photosynthate was accumulating to high levels, suggesting that the trees with substantially reduced cell wall lignin were not carbon limited and that reductions in sink strength were, instead, limiting photosynthesis.
Resumo:
Emotionally significant memories, especially those induced in conjunction with physical and mental trauma, are frequently retained for an individual’s lifetime. How these memories are organized and encoded within neural networks is a fundamental question. The lateral amygdala (LA) is a key nucleus for acquisition and maintenance of associative emotional memories. We used Pavlovian fear conditioning to study how ‘weaker’ and ‘stronger’ memories are encoded in neural networks of the LA. In Pavlovian fear conditioning a neutral stimulus, in this case a tone, is temporally paired with an aversive unconditioned stimulus (US), such as a foot shock. The previously neutral stimulus becomes a conditioned stimulus (CS) capable of eliciting defensive responses. We used time spent freezing when the CS is presented in a neutral context as a dependent variable measure of memory ‘strength’.