995 resultados para YEAST TRANSFER RNAPHE
Resumo:
When located next to chromosomal elements such as telomeres, genes can be subjected to epigenetic silencing. In yeast, this is mediated by the propagation of the SIR proteins from telomeres toward more centromeric regions. Particular transcription factors can protect downstream genes from silencing when tethered between the gene and the telomere, and they may thus act as chromatin domain boundaries. Here we have studied one such transcription factor, CTF-1, that binds directly histone H3. A deletion mutagenesis localized the barrier activity to the CTF-1 histone-binding domain. A saturating point mutagenesis of this domain identified several amino acid substitutions that similarly inhibited the boundary and histone binding activities. Chromatin immunoprecipitation experiments indicated that the barrier protein efficiently prevents the spreading of SIR proteins, and that it separates domains of hypoacetylated and hyperacetylated histones. Together, these results suggest a mechanism by which proteins such as CTF-1 may interact directly with histone H3 to prevent the propagation of a silent chromatin structure, thereby defining boundaries of permissive and silent chromatin domains.
Resumo:
Abstract In this study, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used as a rapid method to identify yeasts isolated from patients in Tunisian hospitals. When identification could not be exstablished with this procedure, sequencing of the internal transcribed spacer with 5.8S ribosomal DNA (rDNA) (ITS1-5.8S-ITS2) and D1/D2 domain of large-subunit (LSU rDNA) were employed as a molecular approach for species differentiation. Candida albicans was the dominant species (43.37% of all cases), followed by C. glabrata (16.55%), C. parapsilosis (13.23%), C. tropicalis (11.34%), C. dubliniensis (4.96%), and other species more rarely encountered in human diseases such as C. krusei, C. metapsilosis, C. lusitaniae, C. kefyr, C. palmioleophila, C. guilliermondii, C. intermedia, C. orthopsilosis, and C. utilis. In addition, other yeast species were obtained including Saccharomyces cerevisiae, Debaryomyces hansenii (anamorph known as C. famata), Hanseniaspora opuntiae, Kodamaea ohmeri, Pichia caribbica (anamorph known as C. fermentati), Trichosporon spp. and finally a novel yeast species, C. tunisiensis. The in vitro antifungal activities of fluconazole and voriconazole were determined by the agar disk diffusion test and Etest, while the susceptibility to additional antifungal agents was determined with the Sensititre YeastOne system. Our results showed low incidence of azole resistance in C. albicans (0.54%), C. tropicalis (2.08%) and C. glabrata (4.28%). In addition, caspofungin was active against most isolates of the collection with the exception of two K. ohmeri isolates. This is the first report to describe caspofungin resistant isolates of this yeast.
Resumo:
To modulate alloreactivity after hematopoietic stem cell transplantation, "suicide" gene-modified donor T cells (GMCs) have been administered with an allogeneic T-cell-depleted marrow graft. We previously demonstrated that such GMCs, generated after CD3 activation, retrovirus-mediated transduction, and G418 selection, had an impaired Epstein-Barr virus (EBV) reactivity, likely to result in an altered control of EBV-induced lymphoproliferative disease. To further characterize the antiviral potential of GMCs, we compared the frequencies of cytomegalovirus (CMV)-specific CD8+ T (CMV-T) cells and EBV-specific CD8+ T (EBV-T) cells within GMCs from CMV- and EBV-double seropositive donors. Unlike anti-EBV responses, the anti-CMV responses were not altered by GMC preparation. During the first days of culture, CMV-T cells exhibited a lower level of CD3-induced apoptosis than did EBV-T cells. In addition, the CMV-T cells escaping initial apoptosis subsequently underwent a higher expansion rate than EBV-T cells. The differential early sensitivity to apoptosis could be in relation to the "recent activation" phenotype of EBV-T cells as evidenced by a higher level of CD69 expression. Furthermore, EBV-T cells were found to have a CD45RA-CD27+CCR7- effector memory phenotype, whereas CMV-T cells had a CD45RA+CD27-CCR7- terminal effector phenotype. Such differences could be contributive, because bulk CD8+CD27- cells had a higher expansion than did bulk CD8+CD27+ cells. Overall, ex vivo T-cell culture differentially affects apoptosis, long-term proliferation, and overall survival of CMV-T and EBV-T cells. Such functional differences need to be taken into account when designing cell and/or gene therapy protocols involving ex vivo T-cell manipulation.
Resumo:
Abstract: Light is a very important environmental cue for plants. In addition to the energy for photosynthesis, it also provides information that is essential for many processes including seed germination, seedlings development, neighbours detection or transition from the vegetative to the reproductive state. Plants evolved different photoreceptors, among which the phytochromes (PHY), which are red/far-red photoreceptors. This family is composed of 5 members in Arabidopsis thaliana, among which phyB plays the major role for detection of red light. Phytochromes are also able to reset the phase of the circadian clock, which is composed of a complicated network of genes able to produce rhythms of about 24 hours, even in constant conditions. SRR1 (Sensitivity to Red light Reduced) is a gene that was shown to act in the phyB pathway as well as in the circadian clock. It was proposed to play a role in the maintenance of rhythms of the core oscillator because of the circadian phenotype of the srr1 mutant in constant light and in constant darkness. In the present study, we present data confirming the role of SRR1 in the core oscillator. Moreover, we show that SRR1 levels are not limiting for circadian rhythms nor for light perception. We show that the protein levels, the sub-cellular localisation or the complex in which SRR1 is found are not regulated in a circadian manner. Orthologues of SRR1 exist in numerous eukaryotes, forming a new gene family. None of the members of this family have been described. Here, we present data suggesting that the mouse orthologue of SRR1 may not be required for oscillation of the circadian clock of mouse cells in culture. The yeast gene (called BER1 for Benomyl REsistant) was studied to understand the biochemical function of this gene family. Based on synthetic genetic screens, a role of Ber1 was inferred in microtubules dynamics, N-terminal acetylation of protein and proteasome biogenesis. The effect of Ber1 on microtubules was confirmed by the observation that the ber1Δ mutant is more resistant to microtubule-depolymerising drugs and microscopic examination of microtubules in ber 1 Δ mutants. Complementation assays of ber1 Δ mutants and srrl mutants failed to reveal any obvious functional conservation of the mouse, yeast and Arabidopsis orthologues. In conclusion, the SRR1 family might encode genes that either plays different roles in different organisms, or have similar biochemical function but are involved in diverse pathway. Résumé: La lumière est un des facteurs abiotiques les plus important pour les plantes. En plus de l'énergie fournie pour la photosynthèse, elle fourni également de l'information nécessaire pour différents processus comme la germination, le développement des jeunes plantules, la détection de plantes avoisinantes ou encore la transition entre le développement végétatif et reproductif. Plusieurs types de photorécepteurs sont apparus chez les plantes au cours de l'évolution, notamment les phytochromes (PHI, qui perçoivent la lumière rouge et rouge lointaine. Cette famille est composé de 5 membres chez Arabidopsis thaliana, parmi lesquels phyB est le principal récepteur pour la lumière rouge. Les phytochromes sont aussi utiles pour la synchronisation entre les cycles jour-nuit dus à la rotation de la terre et l'horloge circadienne. Cette dernière est composée d'un réseau compliqué qui permet la production de rythmes capables de perdurer même en conditions constantes. SRRI (Sensitivity to Red light Reduced) est un gène qui agit dans la voie de signalisation de phyB ainsi que dans l'horloge circadienne. Il a été proposé que SRRI joue un rôle dans la maintenance des rythmes de l'oscillateur principal à cause des phénotypes circadiens du mutant srrl observés en lumière et en obscurité continue. Dans ce travail, nous présentons des données confirmant le rôle de SRR1 dans l'oscillateur principal. Nous montrons que les niveaux d'expression de SRRI ne sont pas limitants pour les rythmes circadiens ou la perception de la lumière. Enfin, nous montrons que le niveau d'accumulation de la protéine, sa localisation subcellulaire ou encore la taille du complexe dans lequel SRRl est trouvé ne sont pas régulés de façon circadiennes. Des orthologues de SRRI existent chez de nombreux eucaryotes, formant une nouvelle famille de gènes. Aucun des membres de cette famille n'a été étudié avant ce travail. Nous présentons des données suggérant que l'orthologue de la souris n'est peut-être pas requis pour les oscillations de l'horloge circadienne de cellules de souris en culture. Le gène de la levure (appelé SERI pour Benomyl REsistant) a été étudié afin de mieux comprendre la fonction biochimique de cette famille de gène. Une analyse par crible synthétique léthal a révélé un rôle de Ber1 dans la dynamique des microtubules, l'acétylation des protéines en N-terminal et la biogenèse du protéasome. L'effet de Ber1 sur les microtubules a été confirmé par l'observation du mutant ber1 en présence de drogue capable de dépolymériser les microtubules. Celui-ci est plus résistant à ces drogues que le type sauvage. Des expériences de complémentation n'ont pas montré de conservation de la fonction entre SRRI et ses homologues de souris ou de levure. En conclusion, la famille SRRI code pour des gènes qui pourraient avoir soit des rôles différents selon les organismes, soit la même fonction biochimique mais qui serait utile pour des voies de signalisation différentes.
Resumo:
To perform a climatic analysis of the annual UV index (UVI) variations in Catalonia, Spain (northeast of the Iberian Peninsula), a new simple parameterization scheme is presented based on a multilayer radiative transfer model. The parameterization performs fast UVI calculations for a wide range of cloudless and snow-free situations and can be applied anywhere. The following parameters are considered: solar zenith angle, total ozone column, altitude, aerosol optical depth, and single-scattering albedo. A sensitivity analysis is presented to justify this choice with special attention to aerosol information. Comparisons with the base model show good agreement, most of all for the most common cases, giving an absolute error within 0.2 in the UVI for a wide range of cases considered. Two tests are done to show the performance of the parameterization against UVI measurements. One uses data from a high-quality spectroradiometer from Lauder, New Zealand [45.04°S, 169.684°E, 370 m above mean sea level (MSL)], where there is a low presence of aerosols. The other uses data from a Robertson–Berger-type meter from Girona, Spain (41.97°N, 2.82°E, 100 m MSL), where there is more aerosol load and where it has been possible to study the effect of aerosol information on the model versus measurement comparison. The parameterization is applied to a climatic analysis of the annual UVI variation in Catalonia, showing the contributions of solar zenith angle, ozone, and aerosols. High-resolution seasonal maps of typical UV index values in Catalonia are presented
Resumo:
This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for the silencing of gene expression using RNA interference in the context of Huntington's disease (HD). Protocols provided here describe the design of small interfering RNAs, their encoding in lentiviral vectors (LVs) and viral production, as well as procedures for their stereotaxic injection in the rodent brain.
Resumo:
The electron hole transfer (HT) properties of DNA are substantially affected by thermal fluctuations of the π stack structure. Depending on the mutual position of neighboring nucleobases, electronic coupling V may change by several orders of magnitude. In the present paper, we report the results of systematic QM/molecular dynamic (MD) calculations of the electronic couplings and on-site energies for the hole transfer. Based on 15 ns MD trajectories for several DNA oligomers, we calculate the average coupling squares 〈 V2 〉 and the energies of basepair triplets X G+ Y and X A+ Y, where X, Y=G, A, T, and C. For each of the 32 systems, 15 000 conformations separated by 1 ps are considered. The three-state generalized Mulliken-Hush method is used to derive electronic couplings for HT between neighboring basepairs. The adiabatic energies and dipole moment matrix elements are computed within the INDO/S method. We compare the rms values of V with the couplings estimated for the idealized B -DNA structure and show that in several important cases the couplings calculated for the idealized B -DNA structure are considerably underestimated. The rms values for intrastrand couplings G-G, A-A, G-A, and A-G are found to be similar, ∼0.07 eV, while the interstrand couplings are quite different. The energies of hole states G+ and A+ in the stack depend on the nature of the neighboring pairs. The X G+ Y are by 0.5 eV more stable than X A+ Y. The thermal fluctuations of the DNA structure facilitate the HT process from guanine to adenine. The tabulated couplings and on-site energies can be used as reference parameters in theoretical and computational studies of HT processes in DNA
Resumo:
Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31 G* and extended 6-31++ G* basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack
Resumo:
We include solvation effects in tight-binding Hamiltonians for hole states in DNA. The corresponding linear-response parameters are derived from accurate estimates of solvation energy calculated for several hole charge distributions in DNA stacks. Two models are considered: (A) the correction to a diagonal Hamiltonian matrix element depends only on the charge localized on the corresponding site and (B) in addition to this term, the reaction field due to adjacent base pairs is accounted for. We show that both schemes give very similar results. The effects of the polar medium on the hole distribution in DNA are studied. We conclude that the effects of polar surroundings essentially suppress charge delocalization in DNA, and hole states in (GC)n sequences are localized on individual guanines
Adenovirus-mediated gene transfer into selected liver segments using a vascular exclusion technique.
Resumo:
Adenovirus-mediated gene therapy is hampered by severe virus-related toxicity, especially to the liver. The aim of the present study was to test the ability of a vascular exclusion technique to achieve transgene expression within selected liver segments, thus minimizing both viral and transgene product toxicity to the liver. An E1-E3-deleted replication-deficient adenovirus expressing a green fluorescent protein (GFP) reporter gene was injected into the portal vein of BDIX rats, with simultaneous clamping of the portal vein tributaries to liver segments II, III, IV, V, and VIII. GFP expression and inflammatory infiltrate were measured in the different segments of the liver and compared with those of the livers of animals receiving the viral vector in the portal vein without clamping. The GFP expression was significantly higher in the selectively perfused segments of the liver as compared with the non-perfused segments (p < 0.0001) and with the livers of animals that received the vector in the portal vein without clamping (p < 0.0001). Accordingly, the inflammatory infiltrate was more intense in the selectively perfused liver segments as compared with all other groups (p < 0.0001). Fluorescence was absent in lungs and kidneys and minimal in spleen. The clinical usefulness of adenovirus-mediated gene transfer to the liver largely depends on the reduction of its liver toxicity. Clamping of selected portal vein branches during injection allows for delivery of genes of interest to targeted liver segments. Transgene expression confined to selected liver segments may be useful in the treatment of focal liver diseases, including metastases.
Resumo:
BACKGROUND: In sporadic Tauopathies, neurofibrillary degeneration (NFD) is characterised by the intraneuronal aggregation of wild-type Tau proteins. In the human brain, the hierarchical pathways of this neurodegeneration have been well established in Alzheimer's disease (AD) and other sporadic tauopathies such as argyrophilic grain disorder and progressive supranuclear palsy but the molecular and cellular mechanisms supporting this progression are yet not known. These pathways appear to be associated with the intercellular transmission of pathology, as recently suggested in Tau transgenic mice. However, these conclusions remain ill-defined due to a lack of toxicity data and difficulties associated with the use of mutant Tau. RESULTS: Using a lentiviral-mediated rat model of hippocampal NFD, we demonstrated that wild-type human Tau protein is axonally transferred from ventral hippocampus neurons to connected secondary neurons even at distant brain areas such as olfactory and limbic systems indicating a trans-synaptic protein transfer. Using different immunological tools to follow phospho-Tau species, it was clear that Tau pathology generated using mutated Tau remains near the IS whereas it spreads much further using the wild-type one. CONCLUSION: Taken together, these results support a novel mechanism for Tau protein transfer compared to previous reports based on transgenic models with mutant cDNA. It also demonstrates that mutant Tau proteins are not suitable for the development of experimental models helpful to validate therapeutic intervention interfering with Tau spreading.
Resumo:
BACKGROUND: Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. RESULTS: The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration of the transgene in a very small time window. CONCLUSION: Our results shed light on processes of exogenous mRNA trafficking, which are crucial to estimate the mRNA bioavailability, and increase the biosafety of transgene integration mediated by transposition. This approach provides a new way for limiting the transgene copy in the genome and their remobilization by mRNA engineering and trafficking.
Resumo:
Estudi realitzat a partir d’una estada al Institut de Génétique Moléculaire de Montpellier, França, entre 2010 i 2012. En aquest projecte s’ha avaluat les avantatges dels vectors adenovirals canins tipus 2 (CAV2) com a vectors de transferència gènica al sistema nerviós central (SNC) en un model primat no-humà i en un model caní del síndrome de Sly (mucopolisacaridosis tipus 7, MPS VII), malaltia monogènica que cursa amb neurodegeneració. En una primera part del projecte s’ha avaluat la biodistribució, l’eficàcia i la durada de l’expressió del transgen en un model primat no humà, (Microcebus murinus). Com ha vector s’ha utilitzat un CAV2 de primera generació que expressa la proteïna verda fluorescent (CAVGFP). Els resultats aportats en aquesta memòria demostren que en primats no humans, com en d’altres espècies testades anteriorment per l’equip de l’EJ Kremer, la injecció intracerebral de CAV2 resulta en una extensa transducció del SNC, siguent les neurones i els precursors neuronals les cèl•lules preferencialment transduïdes. Els vectors canins, servint-se de vesícules intracel•lulars són transportats, majoritàriament, des de les sinapsis cap al soma neuronal, aquest transport intracel•lular permet una extensa transducció del SNC a partir d’una única injecció intracerebral dels vectors virals. En una segona part d’aquest projecte s’ha avaluat l’ús terapèutic dels CAV2. S’ha injectat un vector helper-dependent que expressa el gen la b-glucuronidasa i el gen de la proteïna verda fluorescent (HD-RIGIE), en el SNC del model caní del síndrome de Sly (MPS VII). La biodistribució i la eficàcia terapèutica han estat avaluades. Els nivells d’activitat enzimàtica en animals malalts injectats amb el vector terapèutic va arribar a valors similars als dels animals no afectes. A més a més s’ha observat una reducció en la quantitat dels GAGs acumulats en les cèl•lules dels animals malalts tractats amb el vector terapèutic, demostrant la potencialitat terapèutica dels CAV2 per a malalties que afecten al SNC. Els resultats aportats en aquest treball ens permeten dir que els CAV2 són unes bones eines terapèutiques per al tractament de malalties que afecten al SNC.
Resumo:
In recent research, both soil (root-zone) and air temperature have been used as predictors for the treeline position worldwide. In this study, we intended to (a) test the proposed temperature limitation at the treeline, and (b) investigate effects of season length for both heat sum and mean temperature variables in the Swiss Alps. As soil temperature data are available for a limited number of sites only, we developed an air-to-soil transfer model (ASTRAMO). The air-to-soil transfer model predicts daily mean root-zone temperatures (10cm below the surface) at the treeline exclusively from daily mean air temperatures. The model using calibrated air and root-zone temperature measurements at nine treeline sites in the Swiss Alps incorporates time lags to account for the damping effect between air and soil temperatures as well as the temporal autocorrelations typical for such chronological data sets. Based on the measured and modeled root-zone temperatures we analyzed. the suitability of the thermal treeline indicators seasonal mean and degree-days to describe the Alpine treeline position. The root-zone indicators were then compared to the respective indicators based on measured air temperatures, with all indicators calculated for two different indicator period lengths. For both temperature types (root-zone and air) and both indicator periods, seasonal mean temperature was the indicator with the lowest variation across all treeline sites. The resulting indicator values were 7.0 degrees C +/- 0.4 SD (short indicator period), respectively 7.1 degrees C +/- 0.5 SD (long indicator period) for root-zone temperature, and 8.0 degrees C +/- 0.6 SD (short indicator period), respectively 8.8 degrees C +/- 0.8 SD (long indicator period) for air temperature. Generally, a higher variation was found for all air based treeline indicators when compared to the root-zone temperature indicators. Despite this, we showed that treeline indicators calculated from both air and root-zone temperatures can be used to describe the Alpine treeline position.