965 resultados para Wood concrete composite beams


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: cross-linked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behavior over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP) have been considered inherently difficult to recycle due to both: crosslinked nature of thermoset resins, which cannot be remoulded, and complex composition of the composite itself. Presently, most of the GFRP waste is landfilled leading to negative environmental impacts and supplementary added costs. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, efforts were made in order to recycle grinded GFRP waste, proceeding from pultrusion production scrap, into new and sustainable composite materials. For this purpose, GFRP waste recyclates, were incorporated into polyester based mortars as fine aggregate and filler replacements at different load contents and particle size distributions. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified polymer mortars. Results revealed that GFRP waste filled polymer mortars present improved flexural and compressive behaviour over unmodified polyester based mortars, thus indicating the feasibility of the GFRP industrial waste reuse into concrete-polymer composite materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A/though steel is most commonly used as a reinforcing material in concrete due to its competitive cost and favorable mechanical properties, the problem of corrosion of steel rebars leads to a reduction in life span of the structure and adds to maintenance costs. Many techniques have been developed in recent past to reduce corrosion (galvanizing, epoxy coating, etc.) but none of the solutions seem to be viable as an adequate solution to the corrosion problem. Apart from the use of fiber reinforced polymer (FRP) rebars, hybrid rebars consisting of both FRP and steel are also being tried to overcome the problem of steel corrosion. This paper evaluates the performance of hybrid rebars as longitudinal reinforcement in normal strength concrete beams. Hybrid rebars used in this study essentially consist of glass fiber reinforced polymer (GFRP) strands of 2 mm diameter wound helically on a mild steel core of 6 mm diameter. GFRP stirrups have been used as shear reinforcement. An attempt has been made to evaluate the flexural and shear performance of beams having hybrid rebars in normal strength concrete with and without polypropylene fibers added to the concrete matrix

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass fiber reinforced polymer (GFRP) rebars have been identified as an alternate construction material for reinforcing concrete during the last decade primarily due to its strength and durability related characteristics. These materials have strength higher than steel, but exhibit linear stress–strain response up to failure. Furthermore, the modulus of elasticity of GFRP is significantly lower than that of steel. This reduced stiffness often controls the design of the GFRP reinforced concrete elements. In the present investigation, GFRP reinforced beams designed based on limit state principles have been examined to understand their strength and serviceability performance. A block type rotation failure was observed for GFRP reinforced beams, while flexural failure was observed in geometrically similar control beams reinforced with steel rebars. An analytical model has been proposed for strength assessment accounting for the failure pattern observed for GFRP reinforced beams. The serviceability criteria for design of GFRP reinforced beams appear to be governed by maximum crack width. An empirical model has been proposed for predicting the maximum width of the cracks. Deflection of these GFRP rebar reinforced beams has been predicted using an earlier model available in the literature. The results predicted by the analytical model compare well with the experimental data

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper gives the details of flexure-shear analysis of concrete beams reinforced with GFRP rebars. The influence of vertical reinforcement ratio, longitudinal reinforcement ratio and compressive strength of concrete on shear strength of GFRP reinforced concrete beam is studied. The critical value of shear span to depth ratio (a/d) at which the mode of failure changes from flexure to shear is studied. The fail-ure load of the beam is predicted for various values of a/d ratio. The prediction show that the longitudinally FRP reinforced concrete beams having no stirrups fail in shear for a/d ratio less than 9.0. It is expected that the predicted data is useful for structural engineers to design the FRP reinforced concrete members.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research in the area of geopolymer is gaining momentum during the past 20 years. Studies confirm that geopolymer concrete has good compressive strength, tensile strength, flexural strength, modulus of elasticity and durability. These properties are comparable with OPC concrete.There are many occasions where concrete is exposed to elevated temperatures like fire exposure from thermal processor, exposure from furnaces, nuclear exposure, etc.. In such cases, understanding of the behaviour of concrete and structural members exposed to elevated temperatures is vital. Even though many research reports are available about the behaviour of OPC concrete at elevated temperatures, there is limited information available about the behaviour of geopolymer concrete after exposure to elevated temperatures. A preliminary study was carried out for the selection of a mix proportion. The important variable considered in the present study include alkali/fly ash ratio, percentage of total aggregate content, fine aggregate to total aggregate ratio, molarity of sodium hydroxide, sodium silicate to sodium hydroxide ratio, curing temperature and curing period. Influence of different variables on engineering properties of geopolymer concrete was investigated. The study on interface shear strength of reinforced and unreinforced geopolymer concrete as well as OPC concrete was also carried out. Engineering properties of fly ash based geopolymer concrete after exposure to elevated temperatures (ambient to 800 °C) were studied and the corresponding results were compared with those of conventional concrete. Scanning Electron Microscope analysis, Fourier Transform Infrared analysis, X-ray powder Diffractometer analysis and Thermogravimetric analysis of geopolymer mortar or paste at ambient temperature and after exposure to elevated temperature were also carried out in the present research work. Experimental study was conducted on geopolymer concrete beams after exposure to elevated temperatures (ambient to 800 °C). Load deflection characteristics, ductility and moment-curvature behaviour of the geopolymer concrete beams after exposure to elevated temperatures were investigated. Based on the present study, major conclusions derived could be summarized as follows. There is a definite proportion for various ingredients to achieve maximum strength properties. Geopolymer concrete with total aggregate content of 70% by volume, ratio of fine aggregate to total aggregate of 0.35, NaOH molarity 10, Na2SiO3/NaOH ratio of 2.5 and alkali to fly ash ratio of 0.55 gave maximum compressive strength in the present study. An early strength development in geopolymer concrete could be achieved by the proper selection of curing temperature and the period of curing. With 24 hours of curing at 100 °C, 96.4% of the 28th day cube compressive strength could be achieved in 7 days in the present study. The interface shear strength of geopolymer concrete is lower to that of OPC concrete. Compared to OPC concrete, a reduction in the interface shear strength by 33% and 29% was observed for unreinforced and reinforced geopolymer specimens respectively. The interface shear strength of geopolymer concrete is lower than ordinary Portland cement concrete. The interface shear strength of geopolymer concrete can be approximately estimated as 50% of the value obtained based on the available equations for the calculation of interface shear strength of ordinary portland cement concrete (method used in Mattock and ACI). Fly ash based geopolymer concrete undergoes a high rate of strength loss (compressive strength, tensile strength and modulus of elasticity) during its early heating period (up to 200 °C) compared to OPC concrete. At a temperature exposure beyond 600 °C, the unreacted crystalline materials in geopolymer concrete get transformed into amorphous state and undergo polymerization. As a result, there is no further strength loss (compressive strength, tensile strength and modulus of elasticity) in geopolymer concrete, whereas, OPC concrete continues to lose its strength properties at a faster rate beyond a temperature exposure of 600 °C. At present no equation is available to predict the strength properties of geopolymer concrete after exposure to elevated temperatures. Based on the study carried out, new equations have been proposed to predict the residual strengths (cube compressive strength, split tensile strength and modulus of elasticity) of geopolymer concrete after exposure to elevated temperatures (upto 800 °C). These equations could be used for material modelling until better refined equations are available. Compared to OPC concrete, geopolymer concrete shows better resistance against surface cracking when exposed to elevated temperatures. In the present study, while OPC concrete started developing cracks at 400 °C, geopolymer concrete did not show any visible cracks up to 600 °C and developed only minor cracks at an exposure temperatureof 800 °C. Geopolymer concrete beams develop crack at an early load stages if they are exposed to elevated temperatures. Even though the material strength of the geopolymer concrete does not decrease beyond 600 °C, the flexural strength of corresponding beam reduces rapidly after 600 °C temperature exposure, primarily due to the rapid loss of the strength of steel. With increase in temperature, the curvature at yield point of geopolymer concrete beam increases and thereby the ductility reduces. In the present study, compared to the ductility at ambient temperature, the ductility of geopolymer concrete beams reduces by 63.8% at 800 °C temperature exposure. Appropriate equations have been proposed to predict the service load crack width of geopolymer concrete beam exposed to elevated temperatures. These equations could be used to limit the service load on geopolymer concrete beams exposed to elevated temperatures (up to 800 °C) for a predefined crack width (between 0.1mm and 0.3 mm) or vice versa. The moment-curvature relationship of geopolymer concrete beams at ambient temperature is similar to that of RCC beams and this could be predicted using strain compatibility approach Once exposed to an elevated temperature, the strain compatibility approach underestimates the curvature of geopolymer concrete beams between the first cracking and yielding point.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Das Werkstoffverhalten von stahlfaserfreiem bzw. stahlfaserverstärktem Stahlbeton unter biaxialle Druck- Zugbeanspruchung wurde experimentell und theoretisch untersucht. Die Basis der experimentellen Untersuchungen waren zahlreiche Versuche, die in der Vergangenheit an faserfreiem Stahlbetonscheiben zur Bestimmung des Werkstoffverhaltens von gerissenem Stahlbeton im ebenen Spannungszustand durchgeführt wurden. Bei diesen Untersuchungen wurde festgestellt, dass infolge einer Querzugbeanspruchung eine Abminderung der biaxialen Druckfestigkeit entsteht. Unter Berücksichtigung dieser Erkenntnisse sind zur Verbesserung der Werkstoffeigenschaften des Betons, Stahlbetonscheiben aus stahlfaserverstärktem Beton hergestellt worden. Die aus der Literatur bekannten Werkstoffmodelle für Beton sowie Stahlbeton, im ungerissenen und gerissenen Zustand wurden hinsichtlich der in der Vergangenheit ermittelten Materialeigenschaften des Betons bzw. Stahlbetons unter proportionalen sowie nichtproportionalen äußeren Belastungen erklärt und kritisch untersucht. In den frischen Beton wurden Stahlfasern hinzugegeben. Dadurch konnte die Festigkeits- und die Materialsteifigkeitsabminderung infolge Rissbildung, die zur Schädigung des Verbundwerkstoffs Beton führt, reduziert werden. Man konnte sehen, dass der Druckfestigkeitsabminderungsfaktor und insbesondere die zur maximal aufnehmbaren Zylinderdruckfestigkeit gehörende Stauchung, durch Zugabe von Stahlfasern besser begrenzt wird. Die experimentelle Untersuchungen wurden an sechs faserfreien und sieben stahlfaserverstärkten Stahlbetonscheiben unter Druck-Zugbelastung zur Bestimmung des Verhaltens des gerissenen faserfreien und stahlfaserverstärkten Stahlbetons durchgeführt. Die aus eigenen Versuchen ermittelten Materialeigenschaften des Betons, des stahlfaserverstärkten Betons und Stahlbetons im gerissenen Zustand wurden dargelegt und diskutiert. Bei der Rissbildung des quasi- spröden Werkstoffs Beton und dem stahlfaserverstärkten Beton wurde neben dem plastischen Fließen, auch die Abnahme des Elastizitätsmoduls festgestellt. Die Abminderung der aufnehmbaren Festigkeit und der zugehörigen Verzerrung lässt sich nicht mit der klassischen Fließtheorie der Plastizität ohne Modifizierung des Verfestigungsgesetzes erfassen. Es wurden auf elasto-plastischen Werkstoffmodellen basierende konstitutive Beziehungen für den faserfreien sowie den stahlfaserverstärkten Beton vorgeschlagen. Darüber hinaus wurde in der vorliegenden Arbeit eine auf dem elasto-plastischen Werkstoffmodell basierende konstitutive Beziehung für Beton und den stahlfaser-verstärkten Beton im gerissenen Zustand formuliert. Die formulierten Werkstoffmodelle wurden mittels dem in einer modularen Form aufgebauten nichtlinearen Finite Elemente Programm DIANA zu numerischen Untersuchungen an ausgewählten experimentell untersuchten Flächentragwerken, wie scheibenartigen-, plattenartigen- und Schalentragwerken aus faserfreiem sowie stahlfaserverstärktem Beton verwendet. Das entwickelte elasto-plastische Modell ermöglichte durch eine modifizierte effektive Spannungs-Verzerrungs-Beziehung für das Verfestigungsmodell, nicht nur die Erfassung des plastischen Fließens sondern auch die Berücksichtigung der Schädigung der Elastizitätsmodule infolge Mikrorissen sowie Makrorissen im Hauptzugspannungs-Hauptdruckspannungs-Bereich. Es wurde bei den numerischen Untersuchungen zur Ermittlung des Last-Verformungsverhaltens von scheibenartigen, plattenartigen- und Schalentragwerken aus faserfreiem und stahlfaserverstärktem Stahlbeton, im Vergleich mit den aus Versuchen ermittelten Ergebnissen, eine gute Übereinstimmung festgestellt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Este trabalho compõe-se de duas partes. A primeira parte propõe-se a apresentar um estudo e um programa computacional para a análise não linear geométrica de treliças planas com propriedades: viscoelásticas. Na segunda parte, tem-se o estudo e um programa sobre pórticos planos com propriedades viscoelásticas, usando o modelo reológico standard e o dado pelo CEB. Leva-se em consideração o efeito de temperatura e retração nesta análise. Estende-se o trabalho sobre pórtico para o estudo sobre vigas mistas, levando em consideração a mudança da linha neutra. A formulação está baseada no método dos elementos finitos para grandes deformações, particularizada para treliça e pórtico. É feita a descrição de ambos os programas e rodados diversos exemplos.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a new methodology to model material failure, in two-dimensional reinforced concrete members, using the Continuum Strong Discontinuity Approach (CSDA). The mixture theory is used as the methodological approach to model reinforced concrete as a composite material, constituted by a plain concrete matrix reinforced with two embedded orthogonal long fiber bundles (rebars). Matrix failure is modeled on the basis of a continuum damage model, equipped with strain softening, whereas the rebars effects are modeled by means of phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bondslip and dowel effects. The proposed methodology extends the fundamental ingredients of the standard Strong Discontinuity Approach, and the embedded discontinuity finite element formulations, in homogeneous materials, to matrix/fiber composite materials, as reinforced concrete. The specific aspects of the material failure modeling for those composites are also addressed. A number of available experimental tests are reproduced in order to illustrate the feasibility of the proposed methodology. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is about the 21st century reinforced concrete analysis under the point of view of its constituent materials. First of all it is described the theoretical approach of the bending elements calculated based on the Norms BAEL 91 standarts. After that, numerical load-displacement are presented from reinforced concrete beams and plates validated by experimental data. The numerical modellings has been carried on in the program CASTEM 2000. In this program a elastoplastic model of Drucker-Prager defines the rupture surface of the concrete in non associative plasticity. The crack is smeared on the Gauss points of the finite elements with formation criterion starting from the definition of the rupture surface in the branch traction-traction of the Rankine model. The reinforcements were modeled in a discrete approach with perfect bond. Finally, a comparative analysis is made between the numerical results and calculated criteria showing the future of high performance reinforced concrete in this beginning of 21st century.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Nailed Box Beam structural efficiency is directly dependent of the flange-web joint behavior, which determines the partial composition of the section, as the displacement between elements reduces the effective rigidity of the section and changes the stress distribution and the total displacement of the section. This work discusses the use of Nailed Plywood Box Beams in small span timber bridges, focusing on the reliability of the beam element. It is presented the results of tests carried out in 21 full scale Nailed Plywood Box Beams. The analysis of maximum load tests results shows that it presents a normal distribution, permitting the characteristic values calculation as the normal distribution theory specifies. The reliability of those elements was analyzed focusing on a timber bridge design, to estimate the failure probability in function of the load level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected. © 2010 IOP Publishing Ltd and SISSA.