981 resultados para Wind forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential impact that offshore wind farms may cause on nearby marine radars should be considered before the wind farm is installed. Strong radar echoes from the turbines may degrade radars' detection capability in the area around the wind farm. Although conventional computational methods provide accurate results of scattering by wind turbines, they are not directly implementable in software tools that can be used to conduct the impact studies. This paper proposes a simple model to assess the clutter that wind turbines may generate on marine radars. This method can be easily implemented in the system modeling software tools for the impact analysis of a wind farm in a real scenario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known in the scientific community that some remote sensing instruments assume that sample volumes present homogeneous conditions within a defined meteorological profile. At complex topographic sites and under extreme meteorological conditions, this assumption may be fallible depending on the site, and it is more likely to fail in the lower layers of the atmosphere. This piece of work tests the homogeneity of the wind field over a boundary layer wind profiler radar located in complex terrain on the coast under different meteorological conditions. The results reveal the qualitative importance of being aware of deviations in this homogeneity assumption and evaluate its effect on the final product. Patterns of behavior in data have been identified in order to simplify the analysis of the complex signal registered. The quality information obtained from the homogeneity study under different meteorological conditions provides useful indicators for the best alternatives the system can offer to build wind profiles. Finally, the results are also to be considered in order to integrate them in a quality algorithm implemented at the product level.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With its genesis in New England during the 1800's, the purse seine fishery for Atlantic menhaden, Brevoortia tyrannus, expanded south and by the early 1900's ranged the length of the eastern seaboard. The purse seine fishery for Gulf menhaden. B. patronus, is of relatively recent development, exploitation of the stock beginning in the late 1940's. Landings from both fisheries annually comprise 35-40% of the total U. S. fisheries landings, ranking menhaden first in terms of volume landed. Technological advances in harvesting methods, fish-spotting capabilities, and vessel designs accelerated after World War II, resulting in larger, faster, and wider-ranging carrier vessels, improved speed and efficiency of the harvest, and reduction in labor requirements. Chief products of the menhaden industry are fish meal, fish oil, and solubles, but research into new product lines is underway. Since 1955 on the Atlantic coast and 1964 on the Gulf coast, the NMFS has monitored the fisheries for biostatistical data. Annual data summaries of numbers-of-fish-at-age harvested, catch tonnage, and fishing effort of the fleet form the basis of routine stock assessments and annual catch forecasts to industry for the upcoming fishing season. After landings declined in the 1960's, the Atlantic menhaden stock has recovered through the 1970's and 1980's. Exceptional year classes of Gulf menhaden in recent years account for record landings during the 1980's.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta dissertação apresenta resultados da aplicação de filtros adaptativos, utilizando os algoritmos NLMS (Normalized Least Mean Square) e RLS (Recursive Least Square), para a redução de desvios em previsões climáticas. As discrepâncias existentes entre o estado real da atmosfera e o previsto por um modelo numérico tendem a aumentar ao longo do período de integração. O modelo atmosférico Eta é utilizado operacionalmente para previsão numérica no CPTEC/INPE e como outros modelos atmosféricos, apresenta imprecisão nas previsões climáticas. Existem pesquisas que visam introduzir melhorias no modelo atmosférico Eta e outras que avaliam as previsões e identificam os erros do modelo para que seus produtos sejam utilizados de forma adequada. Dessa forma, neste trabalho pretende-se filtrar os dados provenientes do modelo Eta e ajustá-los, de modo a minimizar os erros entre os resultados fornecidos pelo modelo Eta e as reanálises do NCEP. Assim, empregamos técnicas de processamento digital de sinais e imagens com o intuito de reduzir os erros das previsões climáticas do modelo Eta. Os filtros adaptativos nesta dissertação ajustarão as séries ao longo do tempo de previsão. Para treinar os filtros foram utilizadas técnicas de agrupamento de regiões, como por exemplo o algoritmo de clusterização k-means, de modo a selecionar séries climáticas que apresentem comportamentos semelhantes entre si. As variáveis climáticas estudadas são o vento meridional e a altura geopotencial na região coberta pelo modelo de previsão atmosférica Eta com resolução de 40 km, a um nível de pressão de 250 hPa. Por fim, os resultados obtidos mostram que o filtro com 4 coeficientes, adaptado pelo algoritmo RLS em conjunto com o critério de seleção de regiões por meio do algoritmo k-means apresenta o melhor desempenho ao reduzir o erro médio e a dispersão do erro, tanto para a variável vento meridional quanto para a variável altura geopotencial.