854 resultados para Whole-body Hyperthermia
Resumo:
Insulin secretion from pancreatic beta cells is stimulated by glucose metabolism. However, the relative importance of metabolizing glucose via mitochondrial oxidative phosphorylation versus glycolysis for insulin secretion remains unclear. von Hippel-Lindau (VHL) tumor suppressor protein, pVHL, negatively regulates hypoxia-inducible factor HIF1alpha, a transcription factor implicated in promoting a glycolytic form of metabolism. Here we report a central role for the pVHL-HIF1alpha pathway in the control of beta-cell glucose utilization, insulin secretion, and glucose homeostasis. Conditional inactivation of Vhlh in beta cells promoted a diversion of glucose away from mitochondria into lactate production, causing cells to produce high levels of glycolytically derived ATP and to secrete elevated levels of insulin at low glucose concentrations. Vhlh-deficient mice exhibited diminished glucose-stimulated changes in cytoplasmic Ca(2+) concentration, electrical activity, and insulin secretion, which culminate in impaired systemic glucose tolerance. Importantly, combined deletion of Vhlh and Hif1alpha rescued these phenotypes, implying that they are the result of HIF1alpha activation. Together, these results identify pVHL and HIF1alpha as key regulators of insulin secretion from pancreatic beta cells. They further suggest that changes in the metabolic strategy of glucose metabolism in beta cells have profound effects on whole-body glucose homeostasis.
Resumo:
Duchenne muscular dystrophy (DMD) is a severe disorder characterized by progressive muscle wasting,respiratory and cardiac impairments, and premature death. No treatment exists so far, and the identification of active substances to fight DMD is urgently needed. We found that tamoxifen, a drug used to treat estrogen-dependent breast cancer, caused remarkable improvements of muscle force and of diaphragm and cardiac structure in the mdx(5Cv) mouse model of DMD. Oral tamoxifen treatment from 3 weeks of age for 15 months at a dose of 10 mg/kg/day stabilized myofiber membranes, normalized whole body force, and increased force production and resistance to repeated contractions of the triceps muscle above normal values. Tamoxifen improved the structure of leg muscles and diminished cardiac fibrosis by~ 50%. Tamoxifen also reduced fibrosis in the diaphragm, while increasing its thickness,myofiber count, and myofiber diameter, thereby augmenting by 72% the amount of contractile tissue available for respiratory function. Tamoxifen conferred a markedly slower phenotype to the muscles.Tamoxifen and its metabolites were present in nanomolar concentrations in plasma and muscles,suggesting signaling through high-affinity targets. Interestingly, the estrogen receptors ERa and ERb were several times more abundant in dystrophic than in normal muscles, and tamoxifen normalized the relative abundance of ERb isoforms. Our findings suggest that tamoxifen might be a useful therapy for DMD.
Resumo:
El aumento significativo de la inmigración en los últimos años supone un nuevo reto para la enfermería. Objetivos: conocer la situación actual de la formación de enfermería respecto a la inmigración, su interés por formarse y las dificultades y necesidades que tienen en materia de inmigración. Metodología: estudio descriptivo y transversal analizando una muestra representativa de todos los profesionales de enfermería colegiados en la provincia de Lleida. Para la recogida de datos se utilizó un cuestionario y el análisis estadístico se realizó con el programa informático SPSS versión 13.0. Resultados: más del 90% de los profesionales de enfermería de la provincia de Lleida son mujeres menores de 50 años y que mayoritariamente trabajan en atención hospitalaria. No obstante el interés expresado por temas relacionados con la inmigración, sólo el 24% ha realizado algún tipo de formación al respecto. La mayoría también reconoce tener problemas de comunicación con los inmigrantes. Las sugerencias recogidas en el cuestionario se categorizaron en modelos de integración y en formación. Conclusión: la formación de enfermería en inmigración es baja y se debe a su elevado coste y a que no se realiza en horario laboral. En términos generales, los profesionales de enfermería que se dedican a la Atención Primaria de salud, muestran mayor interés por formarse y mayor flexibilidad para modificar los protocolos y cuidados que sus homónimos hospitalarios.
Resumo:
BACKGROUND: The pre-conditioning of tumor vessels by low-dose photodynamic therapy (L-PDT) was shown to enhance the distribution of chemotherapy in different tumor types. However, how light dose affects drug distribution and tumor response is unknown. Here we determined the effect of L-PDT fluence on vascular transport in human mesothelioma xenografts. The best L-PDT conditions regarding drug transport were then combined with Lipoplatin(®) to determine tumor response. in vivo. Lasers Surg. Med. 47:323-330, 2015. © 2015 Wiley Periodicals, Inc. METHODS: Nude mice bearing dorsal skinfold chambers were implanted with H-Meso1 cells. Tumors were treated by Visudyne(®) -mediated photodynamic therapy with 100 mW/cm(2) fluence rate and a variable fluence (5, 10, 30, and 50 J/cm(2) ). FITC-Dextran (FITC-D) distribution was assessed in real time in tumor and normal tissues. Tumor response was then determined with best L-PDT conditions combined to Lipoplatin(®) and compared to controls in luciferase expressing H-Meso1 tumors by size and whole body bioluminescence assessment (n = 7/group). RESULTS: Tumor uptake of FITC-D following L-PDT was significantly enhanced by 10-fold in the 10 J/cm(2) but not in the 5, 30, and 50 J/cm(2) groups compared to controls. Normal surrounding tissue uptake of FITC-D following L-PDT was significantly enhanced in the 30 J/cm(2) and 50 J/cm(2) groups compared to controls. Altogether, the FITC-D tumor to normal tissue ratio was significantly higher in the 10 J/cm(2) group compared others. Tumor growth was significantly delayed in animals treated by 10 J/cm2-L-PDT combined to Lipoplatin(®) compared to controls. CONCLUSIONS: Fluence of L-PDT is critical for the optimal distribution and effect of subsequently administered chemotherapy. These findings have an importance for the clinical translation of the vascular L-PDT concept in the clinics. Lasers Surg. Med. 47:323-330, 2015.
Resumo:
MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.
Resumo:
PURPOSE: The aim of this study was to compare multidetector CT (MDCT), MRI, and FDG PET/CT imaging for the detection of peritoneal carcinomatosis (PC) in ovarian cancer. PATIENTS AND METHODS: Fifteen women with ovarian cancer and suspected PC underwent MDCT, MRI, and FDG PET/CT, shortly before surgery. Nine abdominopelvic regions were defined according to the peritoneal cancer index. We applied lesion size scores on MDCT and MR and measured FDG PET/CT standard uptake. We blindly read MDCT, MR, and PET/CT before joint review and comparison with histopathology. Receiver operating characteristics analysis was performed. RESULTS: Ten women had PC (67%). Altogether, 135 abdominopelvic sites were compared. Multidetector CT, MRI, and FDG PET/CT had a sensitivity of 96%, 98%, and 95%, and specificity was 92%, 84%, and 96%, respectively. Corresponding receiver operating characteristics area was 0.94, 0.90, and 0.96, respectively, without any significant differences between them (P = 0.12). FDG PET/CT detected supradiaphragmatic disease in 3 women (20%) not seen by MDCT or MRI. CONCLUSIONS: Although MRI had the highest sensitivity and FDG PET/CT had the highest specificity, no significant differences were found between the 3 techniques. Thus, MDCT, as the fastest, most economical, and most widely available modality, is the examination of choice, if a stand-alone technique is required. If inconclusive, PET/CT or MRI may offer additional insights. Whole-body FDG PET/CT may be more accurate for supradiaphragmatic metastatic extension.
Resumo:
Despite its small fraction of the total body weight (2%), the brain contributes for 20% and 25% respectively of the total oxygen and glucose consumption of the whole body. Indeed, glucose has been considered the energy substrate par excellence for the brain. However, evidence accumulated over the last half century revealed an important role for the monocarboxylate lactate in fulfilling the energy needs of neurons. This is particularly true during physiological neuronal activation and in pathological conditions. Lactate transport into and out of the cell is mediated by a family of proton-linked transporters called monocarboxylate transporters (MCTs). In the central nervous system, only three of them have been well characterized: MCT2 is the predominant neuronal isoform, while the other non¬neuronal cell types of the brain express the ubiquitous isoform MCT1. Quite recently, the MCT4 isoform has been described in astrocytes. Due to its high transport capacity compared to the other two isoforms, MCT4 is particularly adapted for glycolytic cells. Because of its recent discovery in the brain, nothing was known about its regulation in the central nervous system. Here we show that MCT4 is regulated by oxygen levels in primary cultures of astrocytes in a time- and concentration-dependent manner via the hypoxia inducible factor-la (HIF-la). Moreover, we showed that MCT4 expression is essential for astrocyte survival under low oxygen conditions. In parallel, we investigated the possible implication of the pyruvate kinase isoform Pkm2, a strong enhancer of glycolysis, in its regulation. Then we showed that MCT4 expression, as well as the expression of the other two MCT isoforms, is altered in a murine model of stroke. Surprisingly, neurons started to express MCT4, as well as MCT1, under such conditions. Altogether, these data suggest that MCT4, due to its high transport capacity for lactate, may be the isoform that enables cells to operate a major metabolic adaptation in response to pathological situations that alter metabolic homeostasis of the brain. -- Le cerveau représente 2% du poids corporel total, mais il contribue pour 20% de la consommation totale d'oxygène et 25% de celle de glucose au repos. Le glucose est considéré comme le substrat énergétique par excellence pour le cerveau. Néanmoins, depuis un demi- siècle maintenant, de plus en plus de travaux ont démontré que le lactate joue un rôle majeur dans le métabolisme cérébral et est capable du subvenir aux besoins énergétiques des neurones. Le lactate est tout particulièrement nécessaire pendant l'activation neuronale ainsi qu'en situation pathologique. Le transport du lactate à travers la barrière hématoencéphalique ainsi qu'à travers les membranes cellulaires est assuré par la famille des transporteurs aux monocarboxylates (MCTs). Dans le système nerveux central, uniquement trois d'entre eux ont été décrits: MCT2 est considéré comme le transporteur neuronal, alors que les autres types cellulaires qui constituent le cerveau expriment l'isoforme ubiquitaire MCT1. Récemment, l'isoforme MCT4 a été rapportée sur les astrocytes. Dû à sa grande capacité de transport pour le lactate, MCT4 est tout particulièrement adapté pour soutenir le métabolisme des cellules hautement glycolytiques, comme les astrocytes. En raison de sa toute récente découverte, les aspects comprenant sa régulation et son rôle dans le cerveau sont pour l'instant méconnus. Les résultats exposés dans ce travail démontrent dans un premier temps que l'expression de MCT4 est régulée par les niveaux d'oxygène dans les cultures d'astrocytes corticaux par le biais du facteur de transcription HIF-la. De plus, nous avons démontré que l'expression de MCT4 est essentielle à la survie des astrocytes quand le niveau d'oxygénation baisse. En parallèle, des résultats préliminaires suggèrent que l'isoforme 2 de la pyruvate kinase, un puissant régulateur de la glycolyse, pourrait jouer un rôle dans la régulation de MCT4. Dans la deuxième partie du travail nous avons démontré que l'expression de MCT4, ainsi que celle de MCT1 et MCT2, est altérée dans un modèle murin d'ischémie cérébrale. De façon surprenante, les neurones expriment MCT4 dans cette condition, alors que ce n'est pas le cas en condition physiologique. En tenant compte de ces résultats, nous suggérons que MCT4, dû à sa particulièrement grande capacité de transport pour le lactate, représente le MCT qui permet aux cellules du système nerveux central, notamment les astrocytes et les neurones, de s'adapter à de très fortes perturbations de l'homéostasie métabolique du cerveau qui surviennent en condition pathologique.
Resumo:
Postmortem imaging consists in the non-invasive examination of bodies using medical imaging techniques. However, gas volume quantification and the interpretation of the gas collection results from cadavers remain difficult. We used whole-body postmortem multi-detector computed tomography (MDCT) followed by a full autopsy or external examination to detect the gaseous volumes in bodies. Gases were sampled from cardiac cavities, and the sample compositions were analyzed by headspace gas chromatography-mass spectrometry/thermal conductivity detection (HS-GC-MS/TCD). Three categories were defined according to the presumed origin of the gas: alteration/putrefaction, high-magnitude vital gas embolism (e.g., from scuba diving accident) and gas embolism of lower magnitude (e.g., following a traumatic injury). Cadaveric alteration gas was diagnosed even if only one gas from among hydrogen, hydrogen sulfide or methane was detected. In alteration cases, the carbon dioxide/nitrogen ratio was often >0.2, except in the case of advanced alteration, when methane presence was the best indicator. In the gas embolism cases (vital or not), hydrogen, hydrogen sulfide and methane were absent. Moreover, with high-magnitude vital gas embolisms, carbon dioxide content was >20%, and the carbon dioxide/nitrogen ratio was >0.2. With gas embolisms of lower magnitude (gas presence consecutive to a traumatic injury), carbon dioxide content was <20% and the carbon dioxide/nitrogen ratio was often <0.2. We found that gas analysis provided useful assistance to the postmortem imaging diagnosis of causes of death. Based on the quantifications of gaseous cardiac samples, reliable indicators were determined to document causes of death. MDCT examination of the body must be performed as quickly as possible, as does gas sampling, to avoid generating any artifactual alteration gases. Because of cardiac gas composition analysis, it is possible to distinguish alteration gases and gas embolisms of different magnitudes.
Resumo:
Body change illusions have been of great interest in recent years for the understanding of how the brain represents the body. Appropriate multisensory stimulation can induce an illusion of ownership over a rubber or virtual arm, simple types of out-of-the-body experiences, and even ownership with respect to an alternate whole body. Here we use immersive virtual reality to investigate whether the illusion of a dramatic increase in belly size can be induced in males through (a) first person perspective position (b) synchronous visual-motor correlation between real and virtual arm movements, and (c) self-induced synchronous visual-tactile stimulation in the stomach area.
Resumo:
STUDY DESIGN: Case-control study. OBJECTIVES: To assess serum myostatin levels, bone mineral density (BMD), appendicular skeletal muscle mass (ASMM) and serum sclerostin levels in chronic spinal cord injured (SCI) patients and healthy controls. SETTING: SCI centre in Italy. METHODS: Blood samples, whole-body bioelectrical impedance analysis and BMD measurement with the ultrasound technique at the calcaneus level were taken from patients suffering from chronic SCI (both motor complete and incomplete) and healthy control subjects. RESULTS: A total of 28 SCI patients and 15 healthy controls were enrolled. Serum myostatin levels were statistically higher (P<0.01) in SCI patients compared with healthy controls. Similar results were found comparing both the motor complete and the motor incomplete SCI subgroups to healthy controls. Serum sclerostin was significantly higher in patients with SCI compared with healthy controls (P<0.01). BMD, stiffness and mean T-score values in SCI patients were significantly lower than those in healthy controls. Serum myostatin concentrations in the motor complete SCI subgroups correlated only with serum sclerostin levels (r(2)=0.42; P=0.001) and ASMM (r(2)=0.70; P=0.002) but not in healthy controls. DISCUSSION: Serum myostatin and serum sclerostin are significantly higher in chronic SCI patients compared with healthy controls. They are potential biomarkers of muscle and bone modifications after SCI. This is the first study reporting an increase in serum myostatin in patients suffering from chronic SCI and a correlation with ASMM.
Resumo:
Glucose homeostasis as well as homeostatic and hedonic control of feeding is regulated by hormonal, neuronal, and nutrient-related cues. Glucose, besides its role as a source of metabolic energy, is an important signal controlling hormone secretion and neuronal activity, hence contributing to whole-body metabolic integration in coordination with feeding control. Brain glucose sensing plays a key, but insufficiently explored, role in these metabolic and behavioral controls, which when deregulated may contribute to the development of obesity and diabetes. The recent introduction of innovative transgenic, pharmacogenetic, and optogenetic techniques allows unprecedented analysis of the complexity of central glucose sensing at the molecular, cellular, and neuronal circuit levels, which will lead to a new understanding of the pathogenesis of metabolic diseases.
Resumo:
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.
Resumo:
Insulin-like growth factor 2 (IGF2), produced and secreted by adult β-cells, functions as an autocrine activator of the β-cell insulin-like growth factor 1 receptor signaling pathway. Whether this autocrine activity of IGF2 plays a physiological role in β-cell and whole-body physiology is not known. Here, we studied mice with β-cell-specific inactivation of Igf2 (βIGF2KO mice) and assessed β-cell mass and function in aging, pregnancy, and acute induction of insulin resistance. We showed that glucose-stimulated insulin secretion (GSIS) was markedly reduced in old female βIGF2KO mice; glucose tolerance was, however, normal because of increased insulin sensitivity. While on a high-fat diet, both male and female βIGF2KO mice displayed lower GSIS compared with control mice, but reduced β-cell mass was observed only in female βIGF2KO mice. During pregnancy, there was no increase in β-cell proliferation and mass in βIGF2KO mice. Finally, β-cell mass expansion in response to acute induction of insulin resistance was lower in βIGF2KO mice than in control mice. Thus, the autocrine action of IGF2 regulates adult β-cell mass and function to preserve in vivo GSIS in aging and to adapt β-cell mass in response to metabolic stress, pregnancy hormones, and acute induction of insulin resistance.
Resumo:
A thorough literature review about the current situation on the implementation of eye lens monitoring has been performed in order to provide recommendations regarding dosemeter types, calibration procedures and practical aspects of eye lens monitoring for interventional radiology personnel. Most relevant data and recommendations from about 100 papers have been analysed and classified in the following topics: challenges of today in eye lens monitoring; conversion coefficients, phantoms and calibration procedures for eye lens dose evaluation; correction factors and dosemeters for eye lens dose measurements; dosemeter position and influence of protective devices. The major findings of the review can be summarised as follows: the recommended operational quantity for the eye lens monitoring is H p (3). At present, several dosemeters are available for eye lens monitoring and calibration procedures are being developed. However, in practice, very often, alternative methods are used to assess the dose to the eye lens. A summary of correction factors found in the literature for the assessment of the eye lens dose is provided. These factors can give an estimation of the eye lens dose when alternative methods, such as the use of a whole body dosemeter, are used. A wide range of values is found, thus indicating the large uncertainty associated with these simplified methods. Reduction factors from most common protective devices obtained experimentally and using Monte Carlo calculations are presented. The paper concludes that the use of a dosemeter placed at collar level outside the lead apron can provide a useful first estimate of the eye lens exposure. However, for workplaces with estimated annual equivalent dose to the eye lens close to the dose limit, specific eye lens monitoring should be performed. Finally, training of the involved medical staff on the risks of ionising radiation for the eye lens and on the correct use of protective systems is strongly recommended.
Resumo:
Objective To suggest a national value for the diagnostic reference level (DRL) in terms of activity in MBq.kg–1, for nuclear medicine procedures with fluorodeoxyglucose (18F-FDG) in whole body positron emission tomography (PET) scans of adult patients. Materials and Methods A survey on values of 18F-FDG activity administered in Brazilian clinics was undertaken by means of a questionnaire including questions about number and manufacturer of the installed equipment, model and detector type. The suggested DRL value was based on the calculation of the third quartile of the activity values distribution reported by the clinics. Results Among the surveyed Brazilian clinics, 58% responded completely or partially the questionnaire; and the results demonstrated variation of up to 100% in the reported radiopharmaceutical activity. The suggested DRL for 18F-FDG/PET activity was 5.54 MBq.kg–1 (0.149 mCi.kg–1). Conclusion The present study has demonstrated the lack of standardization in administered radiopharmaceutical activities for PET procedures in Brazil, corroborating the necessity of an official DRL value to be adopted in the country. The suggested DLR value demonstrates that there is room for optimization of the procedures and 18F-FDG/PET activities administered in Brazilian clinics to reduce the doses delivered to patients. It is important to highlight that this value should be continually revised and optimized at least every five years.