934 resultados para White’s estimator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the problem of conducting inference on nonparametric high-frequency estimators without knowing their asymptotic variances. We prove that a multivariate subsampling method achieves this goal under general conditions that were not previously available in the literature. We suggest a procedure for a data-driven choice of the bandwidth parameters. Our simulation study indicates that the subsampling method is much more robust than the plug-in method based on the asymptotic expression for the variance. Importantly, the subsampling method reliably estimates the variability of the Two Scale estimator even when its parameters are chosen to minimize the finite sample Mean Squared Error; in contrast, the plugin estimator substantially underestimates the sampling uncertainty. By construction, the subsampling method delivers estimates of the variance-covariance matrices that are always positive semi-definite. We use the subsampling method to study the dynamics of financial betas of six stocks on the NYSE. We document significant variation in betas within year 2006, and find that tick data captures more variation in betas than the data sampled at moderate frequencies such as every five or twenty minutes. To capture this variation we estimate a simple dynamic model for betas. The variance estimation is also important for the correction of the errors-in-variables bias in such models. We find that the bias corrections are substantial, and that betas are more persistent than the naive estimators would lead one to believe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En 1903, paraît le magnum opus de William Edward Burghardt Du Bois, The Souls of Black Folk. Ce dernier écrit cet ouvrage en poursuivant trois objectifs. Primo, il souhaite démontrer que Booker T. Washington et ses supporters font fausse route en défendant l’idée selon laquelle les Afro-américains pourront accéder à un avenir meilleur en échangeant leurs droits politiques contre des opportunités économiques. Secundo, Du Bois cherche à faire la lumière sur les talents distinctifs et les grandes réalisations de son peuple afin de convaincre les Blancs que les Noirs ne leur sont pas biologiquement ou moralement inférieurs et, par conséquent, que l’égalité raciale doit être totale et immédiate. Tertio, il veut persuader les Américains de devenir de meilleurs citoyens, en renouant avec les idéaux de leur République et en vivant en fonction de principes moraux élevés. L’écriture de Souls marque un tournant majeur dans la vie intellectuelle de son auteur, car il renonce à cette époque au discours conciliatoire qu’il avait tenu dans sa jeunesse. Les idées qu’il défend dans son livre ont germé quelques années plus tôt, au contact de certains de ses professeurs de l’Université de Berlin, d’Alexander Crummell et surtout, en effectuant une étude de terrain sur la communauté noire de Philadelphie. Du Bois réalise alors l’ampleur des injustices dont sont victimes les Noirs et contre lesquelles la bonne volonté et le travail acharné ne peuvent rien.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The average availability of a repairable system is the expected proportion of time that the system is operating in the interval [0, t]. The present article discusses the nonparametric estimation of the average availability when (i) the data on 'n' complete cycles of system operation are available, (ii) the data are subject to right censorship, and (iii) the process is observed upto a specified time 'T'. In each case, a nonparametric confidence interval for the average availability is also constructed. Simulations are conducted to assess the performance of the estimators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis Entitled “modelling and analysis of recurrent event data with multiple causes.Survival data is a term used for describing data that measures the time to occurrence of an event.In survival studies, the time to occurrence of an event is generally referred to as lifetime.Recurrent event data are commonly encountered in longitudinal studies when individuals are followed to observe the repeated occurrences of certain events. In many practical situations, individuals under study are exposed to the failure due to more than one causes and the eventual failure can be attributed to exactly one of these causes.The proposed model was useful in real life situations to study the effect of covariates on recurrences of certain events due to different causes.In Chapter 3, an additive hazards model for gap time distributions of recurrent event data with multiple causes was introduced. The parameter estimation and asymptotic properties were discussed .In Chapter 4, a shared frailty model for the analysis of bivariate competing risks data was presented and the estimation procedures for shared gamma frailty model, without covariates and with covariates, using EM algorithm were discussed. In Chapter 6, two nonparametric estimators for bivariate survivor function of paired recurrent event data were developed. The asymptotic properties of the estimators were studied. The proposed estimators were applied to a real life data set. Simulation studies were carried out to find the efficiency of the proposed estimators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electric permittivity and magnetic permeability control electromagnetic wave propagation th rough materials. I n naturally occu rring materials, these are positive. Artificial materials exhi b iting negative material properties have been reported : they are referred to as metamaterials. This paper concentrates on a ring-type split-ring resonator (SRR) exhibiting negative magnetic permeability. The design and synthesis of the SRR using the genetic-algorithm approach is explained in detail. A user-friendly g raphical user i nterface (G U I ) for an SRR optim izer and estimator using MATLAB TM is also presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of using information available from one variable X to make inferenceabout another Y is classical in many physical and social sciences. In statistics this isoften done via regression analysis where mean response is used to model the data. Onestipulates the model Y = µ(X) +ɛ. Here µ(X) is the mean response at the predictor variable value X = x, and ɛ = Y - µ(X) is the error. In classical regression analysis, both (X; Y ) are observable and one then proceeds to make inference about the mean response function µ(X). In practice there are numerous examples where X is not available, but a variable Z is observed which provides an estimate of X. As an example, consider the herbicidestudy of Rudemo, et al. [3] in which a nominal measured amount Z of herbicide was applied to a plant but the actual amount absorbed by the plant X is unobservable. As another example, from Wang [5], an epidemiologist studies the severity of a lung disease, Y , among the residents in a city in relation to the amount of certain air pollutants. The amount of the air pollutants Z can be measured at certain observation stations in the city, but the actual exposure of the residents to the pollutants, X, is unobservable and may vary randomly from the Z-values. In both cases X = Z+error: This is the so called Berkson measurement error model.In more classical measurement error model one observes an unbiased estimator W of X and stipulates the relation W = X + error: An example of this model occurs when assessing effect of nutrition X on a disease. Measuring nutrition intake precisely within 24 hours is almost impossible. There are many similar examples in agricultural or medical studies, see e.g., Carroll, Ruppert and Stefanski [1] and Fuller [2], , among others. In this talk we shall address the question of fitting a parametric model to the re-gression function µ(X) in the Berkson measurement error model: Y = µ(X) + ɛ; X = Z + η; where η and ɛ are random errors with E(ɛ) = 0, X and η are d-dimensional, and Z is the observable d-dimensional r.v.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es werde das lineare Regressionsmodell y = X b + e mit den ueblichen Bedingungen betrachtet. Weiter werde angenommen, dass der Parametervektor aus einem Ellipsoid stammt. Ein optimaler Schaetzer fuer den Parametervektor ist durch den Minimax-Schaetzer gegeben. Nach der entscheidungstheoretischen Formulierung des Minimax-Schaetzproblems werden mit dem Bayesschen Ansatz, Spektralen Methoden und der Darstellung von Hoffmann und Laeuter Wege zur Bestimmung des Minimax- Schaetzers dargestellt und in Beziehung gebracht. Eine Betrachtung von Modellen mit drei Einflussgroeßen und gemeinsamen Eigenvektor fuehrt zu einer Strukturierung des Problems nach der Vielfachheit des maximalen Eigenwerts. Die Bestimmung des Minimax-Schaetzers in einem noch nicht geloesten Fall kann auf die Bestimmung einer Nullstelle einer nichtlinearen reellwertigen Funktion gefuehrt werden. Es wird ein Beispiel gefunden, in dem die Nullstelle nicht durch Radikale angegeben werden kann. Durch das Intervallschachtelungs-Prinzip oder Newton-Verfahren ist die numerische Bestimmung der Nullstelle moeglich. Durch Entwicklung einer Fixpunktgleichung aus der Darstellung von Hoffmann und Laeuter war es in einer Simulation moeglich die angestrebten Loesungen zu finden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Arbeit werden mithilfe der Likelihood-Tiefen, eingeführt von Mizera und Müller (2004), (ausreißer-)robuste Schätzfunktionen und Tests für den unbekannten Parameter einer stetigen Dichtefunktion entwickelt. Die entwickelten Verfahren werden dann auf drei verschiedene Verteilungen angewandt. Für eindimensionale Parameter wird die Likelihood-Tiefe eines Parameters im Datensatz als das Minimum aus dem Anteil der Daten, für die die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, und dem Anteil der Daten, für die diese Ableitung nicht positiv ist, berechnet. Damit hat der Parameter die größte Tiefe, für den beide Anzahlen gleich groß sind. Dieser wird zunächst als Schätzer gewählt, da die Likelihood-Tiefe ein Maß dafür sein soll, wie gut ein Parameter zum Datensatz passt. Asymptotisch hat der Parameter die größte Tiefe, für den die Wahrscheinlichkeit, dass für eine Beobachtung die Ableitung der Loglikelihood-Funktion nach dem Parameter nicht negativ ist, gleich einhalb ist. Wenn dies für den zu Grunde liegenden Parameter nicht der Fall ist, ist der Schätzer basierend auf der Likelihood-Tiefe verfälscht. In dieser Arbeit wird gezeigt, wie diese Verfälschung korrigiert werden kann sodass die korrigierten Schätzer konsistente Schätzungen bilden. Zur Entwicklung von Tests für den Parameter, wird die von Müller (2005) entwickelte Simplex Likelihood-Tiefe, die eine U-Statistik ist, benutzt. Es zeigt sich, dass für dieselben Verteilungen, für die die Likelihood-Tiefe verfälschte Schätzer liefert, die Simplex Likelihood-Tiefe eine unverfälschte U-Statistik ist. Damit ist insbesondere die asymptotische Verteilung bekannt und es lassen sich Tests für verschiedene Hypothesen formulieren. Die Verschiebung in der Tiefe führt aber für einige Hypothesen zu einer schlechten Güte des zugehörigen Tests. Es werden daher korrigierte Tests eingeführt und Voraussetzungen angegeben, unter denen diese dann konsistent sind. Die Arbeit besteht aus zwei Teilen. Im ersten Teil der Arbeit wird die allgemeine Theorie über die Schätzfunktionen und Tests dargestellt und zudem deren jeweiligen Konsistenz gezeigt. Im zweiten Teil wird die Theorie auf drei verschiedene Verteilungen angewandt: Die Weibull-Verteilung, die Gauß- und die Gumbel-Copula. Damit wird gezeigt, wie die Verfahren des ersten Teils genutzt werden können, um (robuste) konsistente Schätzfunktionen und Tests für den unbekannten Parameter der Verteilung herzuleiten. Insgesamt zeigt sich, dass für die drei Verteilungen mithilfe der Likelihood-Tiefen robuste Schätzfunktionen und Tests gefunden werden können. In unverfälschten Daten sind vorhandene Standardmethoden zum Teil überlegen, jedoch zeigt sich der Vorteil der neuen Methoden in kontaminierten Daten und Daten mit Ausreißern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vielen Industrieanlagen werden verschiedenste Fluide in der Produktion eingesetzt, die bei einer Freisetzung, z. B. durch ihre toxische oder karzinogene Eigenschaft oder wegen der Brand- und Explosionsgefahr, sowohl die Umwelt als auch Investitionsgüter gefährden können. In Deutschland sind zur Risikominimierung die maximal zulässigen Emissionsmengen von Stoffen und Stoffgruppen in verschiedenen Umweltvorschriften festgelegt, wodurch zu deren Einhaltung eine ausreichende Überwachung aller relevanten Anlagenkomponenten seitens der Betreiber notwendig ist. Eine kontinuierliche und flächendeckende Überwachung der Anlagen ist aber weder personell, noch finanziell mit klassischer In-situ-Sensorik realisierbar. In der vorliegenden Arbeit wird die Problemstellung der autonomen mobilen Gasferndetektion und Gasleckortung in industrieller Umgebung mittels optischer Gasfernmesstechnik adressiert, die zum Teil im Rahmen des Verbundprojekts RoboGasInspector entstand. Neben der Beschreibung des verwendeten mobilen Robotersystems und der Sensorik, werden die eingesetzten Techniken zur Messdatenverarbeitung vorgestellt. Für die Leckortung, als Sonderfall im Inspektionsablauf, wurde die TriMax-Methode entwickelt, die zusätzlich durch einen Bayes-Klassifikator basierten Gasleckschätzer (Bayes classification based gas leak estimator (BeaGLE)) erweitert wurde, um die Erstellung von Leckhypothesen zu verbessern. Der BeaGLE basiert auf Techniken, die in der mobilen Robotik bei der Erstellung von digitalen Karten mittels Entfernungsmessungen genutzt werden. Die vorgestellten Strategien wurden in industrieller Umgebung mittels simulierter Lecks entwickelt und getestet. Zur Bestimmung der Strategieparameter wurden diverse Laborund Freifelduntersuchungen mit dem verwendeten Gasfernmessgerät durchgeführt. Die abschließenden Testergebnisse mit dem Gesamtsystem haben gezeigt, dass die automatische Gasdetektion und Gaslecksuche mittels autonomer mobiler Roboter und optischer Gasfernmesstechnik innerhalb praktikabler Zeiten und mit hinreichender Präzision realisierbar sind. Die Gasdetektion und Gasleckortung mittels autonomer mobiler Roboter und optischer Gasfernmesstechnik ist noch ein junger Forschungszweig der industriellen Servicerobotik. In der abschließenden Diskussion der vorliegenden Arbeit wird deutlich, dass noch weitergehende, interessante Forschungs- und Entwicklungspotentiale erkennbar sind.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The registration of pre-operative volumetric datasets to intra- operative two-dimensional images provides an improved way of verifying patient position and medical instrument loca- tion. In applications from orthopedics to neurosurgery, it has a great value in maintaining up-to-date information about changes due to intervention. We propose a mutual information- based registration algorithm to establish the proper align- ment. For optimization purposes, we compare the perfor- mance of the non-gradient Powell method and two slightly di erent versions of a stochastic gradient ascent strategy: one using a sparsely sampled histogramming approach and the other Parzen windowing to carry out probability density approximation. Our main contribution lies in adopting the stochastic ap- proximation scheme successfully applied in 3D-3D registra- tion problems to the 2D-3D scenario, which obviates the need for the generation of full DRRs at each iteration of pose op- timization. This facilitates a considerable savings in compu- tation expense. We also introduce a new probability density estimator for image intensities via sparse histogramming, de- rive gradient estimates for the density measures required by the maximization procedure and introduce the framework for a multiresolution strategy to the problem. Registration results are presented on uoroscopy and CT datasets of a plastic pelvis and a real skull, and on a high-resolution CT- derived simulated dataset of a real skull, a plastic skull, a plastic pelvis and a plastic lumbar spine segment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The computation of a piecewise smooth function that approximates a finite set of data points may be decomposed into two decoupled tasks: first, the computation of the locally smooth models, and hence, the segmentation of the data into classes that consist on the sets of points best approximated by each model, and second, the computation of the normalized discriminant functions for each induced class. The approximating function may then be computed as the optimal estimator with respect to this measure field. We give an efficient procedure for effecting both computations, and for the determination of the optimal number of components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new method for estimating the expected return of a POMDP from experience. The estimator does not assume any knowle ge of the POMDP and allows the experience to be gathered with an arbitrary set of policies. The return is estimated for any new policy of the POMDP. We motivate the estimator from function-approximation and importance sampling points-of-view and derive its theoretical properties. Although the estimator is biased, it has low variance and the bias is often irrelevant when the estimator is used for pair-wise comparisons.We conclude by extending the estimator to policies with memory and compare its performance in a greedy search algorithm to the REINFORCE algorithm showing an order of magnitude reduction in the number of trials required.