852 resultados para Wet Porous Filtration
Resumo:
The objective of the present study was to evaluate the characteristics of the sward canopy of Marandu grass during the rainy season, the wet-to-dry transition and the dry seasons, between March and September 2004, under intermittent grazing, and to correlate those characteristics with the performance of crossbred heifers receiving mineral supplements ad libitum or protein supplements. The experiment consisted of a randomized block design with three blocks (set of 13 paddocks), each containing five crossbred heifers per experimental unit, totaling 15 replicates. The heifers were given protein supplements daily in individual stalls and received an average 4 g/kg/day of the supplement during the rainy season and 5 g/kg/day during the dry season. Their weight gain was assessed monthly. The pasture structure was assessed through destructive sampling, and the bromatological composition of esophageal extrusa samples was also assessed. Analysis of variance was used to assess performance, and regression analysis was used to evaluate the sward canopy characteristics in relation to the months of the year. A cluster procedure was used to determine the similarity between the months of the year under assessment. Two different groups were formed for pasture evaluation: one group including the months of March to July and another group including the months of August and September. The first group exhibited a better canopy structure than the second group. This fact was corroborated by the animal performance, which was lower during the months of the second group. Low-intake protein supplementation was effective in increasing the performance of the grazing heifers. Pasture structure is critical for animal performance in a grazing environment, regardless of the type of supplementation.
Resumo:
In the petroleum industry, water is always present in the reservoir formation together with petroleum and natural gas and this fact provokes the production of water with petroleum, resulting in a great environmental impact. Several methods can be applied for treatment of oily waters, such as: gravitational vases, granulated media filtration systems, flotation process, centrifugation process and the use of hydrocyclones, which can also be used in a combined way. However, the flotation process has showed a great efficiency as compared with other methods, because these methods do not remove great part of the emulsified oil. In this work was investigated the use of surfactants derived from vegetable oils, OSS and OGS, as collectors, using the flotation process in a glass column with a porous plate filter in its base for the input of the gaseous steam. For this purpose, oil/water emulsions were prepared using mechanical stirring, with concentrations around 300 ppm. The air flow rate was set at 700 cm3/min and the porous plate filter used for the generation of the air bubbles has pore size varying from 16 to 40 Pm. The column operated at constant volume (1500mL). A new methodology has been developed to collect the samples, where, instead of collecting the water phase, it was collected the oil phase removed by the process in the top of the flotation column. It has been observed that it is necessary to find an optimum surfactant concentration to achieve enhanced removal efficiency. Being for OSS 1.275 mmol/L and for OGS 0.840 mmol/L, with removal efficiencies of 93% and 99%, respectively, using synthetic solutions. For the produced water, the removal in these concentrations was 75% for OSS and 65% for OGS. It is possible to remove oil from water in a flotation process using surfactants of high HLB, fact that is against the own definition of HLB (Hydrophile-Lipophile Balance). The interfacial tension is an important factor in the oil removal process using a flotation process, because it has direct interference in the coalescence of the oil drops. The spreading of the oil of the air bubble should be considered in the process, and for the optimum surfactant concentrations it reached a maximum value. The removal kinetics for the flotation process using surfactants in the optimum concentration has been adjusted according to a first order model, for synthetic water as for the produced water.
Resumo:
Cambial activity and periodicity of secondary xylem formation in Cedrela fissilis, a semi-ring-porous species, were studied. Wood samples were collected periodically from 1996 to 2000. The phenology was related to climate data of the region. The cambium has one active and one dormant period per year. The active period coincides with the wet season when trees leaf-out. The dormant period coincides with the dry season when trees lose their leaves. Growth rings are marked by parenchyma bands that begin to be formed, together with the small latewood vessels, just before the cambium becomes dormant at the beginning of the dry season. These bands are added to when the cambium reactivates in the wet season. At this time, the large earlywood vessels of the growth rings are also formed. As these bands consist of both terminal and initial parenchyma, we suggest the general term marginal bands be used to describe them. The growth layers vary in width among and within the trees.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Gochnatia polymorpha (Less.) Cabrera is a widespread tree species found in different physiognomies of neotropical savanna (cerrado) formations of south-eastern Brazil. The present study describes some leaf anatomical characteristics of this species as a function of the time of leaf flush, during dry or wet seasons. This species presents anatomical plasticity in the cuticle, palisade parenchyma and abaxial epidermis as well as in stomatal size and stomatal and trichome density, which are leaf structures linked with water-status control. Leaf structure changed to suit the particular environmental conditions during dry and wet seasons. The production of different wet-and dry-season leaf types in G. polymorpha could be a response to drought and an adaptation to environmental constraints in the cerrado.
Resumo:
A mathematical model was developed in order to study the behavior of thermal stratification of liquid in a typical storage tank with porous medium. The model employs a transient stream function-vorticity formulation to predict the development of stream function and temperature fields in a charging process. Parameters analyzed include Biot, Darcy, Reynolds and Richardson numbers, position, and the thickness of the porous medium. The results show the influence of these physical parameters that should be considered for a good design of storage tanks with thermal stratification.
Resumo:
Several researches have been developed in order to verify the porosity effect over the ceramic material properties. The starch consolidation casting (SCC) allows to obtain porous ceramics by using starch as a binder and pore forming element. This work is intended to describe the porous mathematical behavior and the mechanical resistance at different commercial starch concentration. Ceramic samples were made with alumina and potato and corn starches. The slips were prepared with 10 to 50 wt% of starch. The specimens were characterized by apparent density measurements and three-point flexural test associated to Weibull statistics. Results indicated that the porosity showed a first-order exponential equation e(-x/c) increasing in both kinds of starches, so it was confirmed that the alumina ceramic porosity is related to the kind of starch used. The mechanical resistance is represented by a logarithmic expression R = A + B/1+10((Log(x0)-P)C).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
AIM: To evaluate the host response of the gel and porous polyethylene implants in anophthalmic cavities using the B scan ultrasound.METHODS: Thirty-six white rabbits underwent unilateral enucleation with placement of gel or porous polyethylene spheres implants. The animals were submitted to clinical examination weekly and to ultrasound evaluation on 30, 60 and 90 days after surgery.RESULTS: All rabbits with gel polyethylene spheres, except one, showed implant extrusion probably because the gel spheres have hydrated and increased in volume. The B ultrasound of the gel polyethylene implant did not show vessels inside during the following period. Five animals (27.8%) with porous polyethylene spheres presented implant extrusion after 30 days of surgery. According to B ultrasound, the porous polyethylene implant showed irregular and heterogeneous architecture and reflective peaks similar to vascularized tissues.CONCLUSION: More studies are required to determine the ideal volume of gel polyethylene implant necessary to correct the diminished orbital content in the anophthalmic cavity. The B ultrasound effectiveness showed in this study for anophthalmic socket implants evaluation provides useful information for further in vivo studies and might substitute expensive methods of implants vascularization evaluation,
Resumo:
Purpose: Synthetic hydroxyapatite and porous polyethylene (Polipore) spheres were placed in rabbits' eviscerated cavities to evaluate tissue reaction and volume maintenance.Methods. Fifty-six Norfolk albino rabbits underwent unilateral evisceration and implantation of synthetic hydroxyapatite (H group, 28 animals) or porous polyethylene spheres (P group, 28 animals). Postoperative reactions, animal behavior, and socket conditions were monitored. Light microscopy and morphometric evaluation with statistical analysis of the exenterated orbits were performed at 7, 15, 30, 60, 90, 120, and 180 days. Scanning electron microscopy was appraised 7, 60, and 180 days after surgery.Results: Two animals from the H group and 1 from the P group had extrusion 7 days after surgery. Throughout the experimental period, the synthetic hydroxyapatite caused more inflammation than the porous polyethylene material. Ingrowth in the sphere occurred 7 to 15 days after the surgery in both groups, and the tissue reaction became denser at approximate to60 to 90 days, when bony metaplasia began in the H group. Volume maintenance was better in the P group and with a smaller pseudocapsule surrounding the implanted sphere than in the H group.Conclusions: Clinical findings demonstrated mild inflammation inside the sphere and in the pseudocapsule surrounding it and better cavity volume maintenance in the P group animals. The authors consider porous polyethylene a more suitable material than synthetic hydroxyapatite for use in anophthalmic cavity reconstruction.
Resumo:
This study aimed at evaluating the effect of total replacement of dry corn by wet grain corn silage (WGCS) in the feed of label broilers older than 28 days of age on performance, mortality, carcass, parts, breast meat and thighs meat yields, and meat quality. A mixed-sex flock of 448 ISA S 757-N (naked-neck ISA JA Label) day-old chicks was randomly distributed in to randomized block experimental design with four treatments (T1 - with no WGCS; T2 - WGCS between 28 and 83 days; T3 - WGCS between 42 and 83 days; and T4 - WGCS between 63 and 83 days) and four replicates of 28 birds each. Birds were raised under the same management and feeding conditions until 28 days of age, when they started to have free access to paddock with pasture (at least 3m²/bird) and to be fed the experimental diets. Feed and water were offered ad libitum throughout the rearing period, which was divided in three stages: starter (1 to 28 days), grower (29 to 63 days), and finisher (64 to 83 days) according to the feeding schedule. During the short periods of WGCS use (group T2 during grower stage and T4 during the finisher stage), performance and mortality results were similar as to those of the control group (T1). At the end of the experiment, it was observed that the extended use of WGCS (T2 and T3) determined a negative effect on feed conversion ratio. However, the best results of breast meat yield were observed with birds fed WGCS since 28 days (T2). It was concluded that WGCS can replace dry corn grain for short periods during the grower and finisher stages with no impairment of meat quality and yield in slow growth broilers.