916 resultados para Wavelets and fast transform eavelet
Resumo:
In the aftermath of the 2008 crisis, scholars have begun to revise their conceptions of how market participants interact. While the traditional “rationalist optic” posits market participants who are able to process decisionrelevant information and thereby transform uncertainty into quantifiable risks, the increasingly popular “sociological optic” stresses the role of uncertainty in expectation formation and social conventions for creating confidence in markets. Applications of the sociological optic to concrete regulatory problems are still limited. By subjecting both optics to the same regulatory problem—the role of credit rating agencies (CRAs) and their ratings in capital markets—this paper provides insights into whether the sociological optic offers advice to tackle concrete regulatory problems and discusses the potential of the sociological optic in complementing the rationalist optic. The empirical application suggests that the sociological optic is not only able to improve our understanding of the role of CRAs and their ratings, but also to provide solutions complementary to those posited by the rationalist optic.
Resumo:
CONTEXT The autosomal dominant form of GH deficiency (IGHD II) is characterized by markedly reduced GH secretion combined with low concentrations of IGF-1 leading to short stature. OBJECTIVE Structure-function analysis of a missense mutation in the GH-1 gene converting codon 76 from leucine (L) to proline (P) yielding a mutant GH-L76P peptide. DESIGN, SETTINGS, AND PATIENTS Heterozygosity for GH-L76P/wt-GH was identified in a nonconsanguineous Spanish family. The index patients, two siblings, a boy and a girl, were referred for assessment of their short stature (-3.2 and -3.8 SD). Their grandmother, father, and aunt were also carrying the same mutation and showed severe short stature; therefore, IGHD II was diagnosed. INTERVENTIONS AND RESULTS AtT-20 cells coexpressing both wt-GH and GH-L76P showed a reduced GH secretion (P < .001) after forskolin stimulation when compared with the cells expressing only wt-GH. In silico mutagenesis and molecular dynamics simulations presented alterations of correct folding and mutant stability compared with wt-GH. Therefore, further structural analysis of the GH-L76P mutant was performed using expressed and purified proteins in Escherichia coli by thermofluor assay and fast degradation proteolysis assay. Both assays revealed that the GH-L76P mutant is unstable and misfolded compared to wt-GH confirming the bioinformatic model prediction. CONCLUSIONS This is the first report of a family suffering from short stature caused by IGHD II, which severely affects intracellular GH folding and stability as well as secretion, highlighting the necessity of functional analysis of any GH variant for defining new mechanisms as a cause for IGHD II.
Resumo:
The evolution of porosity due to dissolution/precipitation processes of minerals and the associated change of transport parameters are of major interest for natural geological environments and engineered underground structures. We designed a reproducible and fast to conduct 2D experiment, which is flexible enough to investigate several process couplings implemented in the numerical code OpenGeosys-GEM (OGS-GEM). We investigated advective-diffusive transport of solutes, effect of liquid phase density on advective transport, and kinetically controlled dissolution/precipitation reactions causing porosity changes. In addition, the system allowed to investigate the influence of microscopic (pore scale) processes on macroscopic (continuum scale) transport. A Plexiglas tank of dimension 10 × 10 cm was filled with a 1 cm thick reactive layer consisting of a bimodal grain size distribution of celestite (SrSO4) crystals, sandwiched between two layers of sand. A barium chloride solution was injected into the tank causing an asymmetric flow field to develop. As the barium chloride reached the celestite region, dissolution of celestite was initiated and barite precipitated. Due to the higher molar volume of barite, its precipitation caused a porosity decrease and thus also a decrease in the permeability of the porous medium. The change of flow in space and time was observed via injection of conservative tracers and analysis of effluents. In addition, an extensive post-mortem analysis of the reacted medium was conducted. We could successfully model the flow (with and without fluid density effects) and the transport of conservative tracers with a (continuum scale) reactive transport model. The prediction of the reactive experiments initially failed. Only the inclusion of information from post-mortem analysis gave a satisfactory match for the case where the flow field changed due to dissolution/precipitation reactions. We concentrated on the refinement of post-mortem analysis and the investigation of the dissolution/precipitation mechanisms at the pore scale. Our analytical techniques combined scanning electron microscopy (SEM) and synchrotron X-ray micro-diffraction/micro-fluorescence performed at the XAS beamline (Swiss Light Source). The newly formed phases include an epitaxial growth of barite micro-crystals on large celestite crystals (epitaxial growth) and a nano-crystalline barite phase (resulting from the dissolution of small celestite crystals) with residues of celestite crystals in the pore interstices. Classical nucleation theory, using well-established and estimated parameters describing barite precipitation, was applied to explain the mineralogical changes occurring in our system. Our pore scale investigation showed limits of the continuum scale reactive transport model. Although kinetic effects were implemented by fixing two distinct rates for the dissolution of large and small celestite crystals, instantaneous precipitation of barite was assumed as soon as oversaturation occurred. Precipitation kinetics, passivation of large celestite crystals and metastability of supersaturated solutions, i.e. the conditions under which nucleation cannot occur despite high supersaturation, were neglected. These results will be used to develop a pore scale model that describes precipitation and dissolution of crystals at the pore scale for various transport and chemical conditions. Pore scale modelling can be used to parameterize constitutive equations to introduce pore-scale corrections into macroscopic (continuum) reactive transport models. Microscopic understanding of the system is fundamental for modelling from the pore to the continuum scale.
Resumo:
9-β-D-arabinosylguanine (ara-G), an analogue of deoxyguanosine, has demonstrated T-lymphoblast selective anti-leukemia activity both in vitro and in vivo in cell lines and primary cells and in phase I investigations. The present work was initiated to identify factors that result in this selectivity. ^ The cytotoxicity of ara-G is manifest only after its phosphorylation. Experiments using cell lines transfected to overexpress specific nucleoside kinases demonstrated that the phosphorylation of ara-G to its monophosphate is by both cytoplasmic deoxycytidine kinase and mitochondria) deoxyguanosine kinase. Ara-G monophosphate is converted to its 5′-triphosphate (ara-GTP) in cells by these kinases and then incorporated into DNA. Mechanistic studies demonstrated that incorporation of ara-GTP into DNA was a necessary event for the induction of cell death. ^ Pharmacokinetic and pharmacodynamic studies utilizing three human acute leukemia cell lines, CEM (T-lymphoblastic), Raji (B-lymphoblastic), and ML-1 (myeloid) were performed. CEM cells were most sensitive to ara-G-induced inhibition of colony formation, accumulated ara-GTP at a faster rate and to a greater degree than either Raji or ML-1, but incorporated the lowest number of ara-G molecules into DNA. The position of incorporation was internal and similar in all cell lines. The terminal elimination phase of ara-GTP was >24 h and similar in these cells. Comparisons between inhibition of colony formation and ara-GTP incorporation into DNA demonstrated that while within a cell line there was correlation among these parameters, between cell lines there was no relationship between number of incorporated ara-G molecules and ara-G(TP)-mediated toxicity suggesting that there were additional factors. ^ The expression of membrane bound Fas and Fast was unchanged in all cell lines. In contrast, there was a 2-fold increase in soluble Fast, which was found exclusively in CEM cells. Ara-G-mediated apoptosis in CEM occurred from all phases of the cell cycle and was abrogated partially by Fas antagonist antibodies. These data suggest that Fas-mediated cell death due to the liberation of sFasL may be responsible for the hypersensitivity to ara-G manifested by immature T-cells such as CEM. The role of Fas in ara-G induced death of acute T-lymphoblastic leukemia cells during therapy needs to be tested. ^
Resumo:
Herbicides are used to control the growth of weeds along highways, power lines, and many other urban locations. Exposure to herbicides has been linked to adverse health outcomes. This study was initiated to pretest for the presence of herbicides in multiple water sources near intersections in a corridor in the Northwest Harris County (specifically in the Highway 6/FM 1960, North Freeway 45, US 290 and S 99 corridor). Roadside water and tap water samples were collected and analyzed for herbicides using the established Environmental Protection Agency (EPA) Method 515.4: "Determination of Chlorinated Acids in Drinking Water by Liquid-Liquid Micro-extraction, Derivatization, and Fast Gas Chromatography with Electron Capture Detection." A standard operating procedure (adapted from the US EPA Method 515.4) was developed for subsequent, larger studies of environmental fate of herbicides and non-occupational exposure risks. Preliminary testing of 16 water samples was performed to pretest the existence of trace herbicides; all concentrations that were greater than the minimum reporting limits of each analyte are reported with a 99 percent confidence. This study failed to find concentrations above the limits of detection of the method in any of the samples collected on June 15, 2008. However, this does not indicate that the waters around the NW Harris County are free of herbicides and metabolites. A larger and repeated sampling in the region would be necessary to make that claim. ^
Resumo:
Background. This study was designed to evaluate the effects of the Young Leaders for Healthy Change program, an internet-delivered program in the school setting that emphasized health advocacy skills-development, on nutrition and physical activity behaviors among older adolescents (13–18 years). The program consisted of online curricular modules, training modules, social media, peer and parental support, and a community service project. Module content was developed based on Social Cognitive Theory and known determinants of behavior for older adolescents. ^ Methods. Of the 283 students who participated in the fall 2011 YL program, 38 students participated in at least ten of the 12 weeks and were eligible for this study. This study used a single group-only pretest/posttest evaluation design. Participants were 68% female, 58% white/Caucasian, 74% 10th or 11th graders, and 89% mostly A and/or B students. The primary behavioral outcomes for this analysis were participation in 60-minutes of physical activity per day, 20-minutes of vigorous- or moderate- intensity physical activity (MVPA) participation per day, television and computer time, fruit and vegetable (FV) intake, sugar-sweetened beverage intake, and consumption of breakfast, home-cooked meals, and fast food. Other outcomes included knowledge, beliefs, and attitudes related to healthy eating, physical activity, and advocacy skills. ^ Findings. Among the 38 participants, no significant changes in any variables were observed. However, among those who did not previously meet behavioral goals there was an 89% increase in students who participated in more than 20 minutes of MVPA per day and a 58% increase in students who ate home-cooked meals 5–7 days per week. The majority of participants met program goals related to knowledge, beliefs, and attitudes prior to the start of the program. Participants reported either maintaining or improving to the goal at posttest for all items except FV intake knowledge, taste and affordability of healthy foods, interest in teaching others about being healthy, and ease of finding ways to advocate in the community. ^ Conclusions. The results of this evaluation indicated that promoting healthy behaviors requires different strategies than maintaining healthy behaviors among high school students. In the school setting, programs need to target the promotion and maintenance of health behaviors to engage all students who participate in the program as part of a class or club activity. Tailoring the program using screening and modifying strategies to meet the needs of all students may increase the potential reach of the program. The Transtheoretical Model may provide information on how to develop a tailored program. Additional research on how to utilize the constructs of TTM effectively among high school students needs to be conducted. Further evaluation studies should employ a more expansive evaluation to assess the long-term effectiveness of health advocacy programming.^
Resumo:
Respiration rates and electron transport system (ETS) activities were measured in dominant copepod species from the northern Benguela upwelling system in January-February 2011 to assess the accuracy of the ETS assay in predicting in vivo respiration rates. Individual respiration rates varied from 0.06 to 1.60 µL O2/h/ind, while ETS activities converted to oxygen consumption ranged from 0.14 to 4.46 µL O2/h/ind. ETS activities were significantly correlated with respiration rates (r**2 = 0.79, p = 0.0001). R:ETS ratios were lowest in slow-moving Eucalanidae (0.11) and highest in diapausing Calanoides carinatus copepodids CV (0.76) while fast-moving copepods showed intermediate R:ETS (0.23-0.37). 82% of the variance of respiration rates could be explained by differences in dry mass, temperature and the activity level of different copepod species. Three regression equations were derived to calculate respiration rates for diapausing, slow- and fast-moving copepods, respectively, based on parameters such as body mass and temperature. Thus, knowledge about the activity level and behavioral characteristics of copepod species can significantly increase the predictive accuracy of metabolic models, which will help to better understand and quantify the impact of copepods on nutrient and carbon fluxes in marine ecosystems.
Resumo:
This is the first study to determine vertical distribution patterns of sympagic meiofauna, including metazoans, protozoans and eggs >20 µm, in the Amundsen Gulf (southeastern Beaufort Sea, Arctic). Full sea-ice cores were sampled from mid of March to end of May 2008 (Circumpolar Flaw Lead system study). Investigations were performed on first-year ice from three pack- and three fast-ice stations. Additionally, 5-cm bottom-ice sections were sampled at 13 pack-ice and 5 fast-ice stations. The metazoan community was composed of nematodes, rotifers, copepods, copepod nauplii, platyhelminthes and a few rare taxa such as mollusks, cnidarians and nemerteans. High numbers of eggs, between 50 and 2,188 eggs/L, particularly of nematodes and copepods, were present in the ice. Investigations revealed also eggs of the pelagic species Calanus hyperboreus and Sagitta spp. within the ice, so that further research is needed to clarify whether more organisms than expected might use this habitat as a reproduction ground. Many different morphotypes of protozoans were observed in the samples, especially ciliates of the order Euplotida. The highest abundance was always found in the lowermost 5 cm of the ice cores, nevertheless sympagic meiofauna was not restricted to that part of the ice. Integrated meiofauna abundance ranged between 41 and 4,738 x 10**2 Ind/m**2 and was highest in the fast ice in early May. Differences between pack and fast ice in terms of integrated meiofauna communities and vertical distribution were not significant, while the analysis of the bottom-ice sections indicated both a temporal development and ice-type-specific differences.
Resumo:
Mixing of seawater subjects phytoplankton to fluctuations in photosynthetically active radiation (400-700 nm) and ultraviolet radiation (UVR; 280-400 nm). These irradiance fluctuations are now superimposed upon ocean acidification and thinning of the upper mixing layer through stratification, which alters mixing regimes. Therefore, we examined the photosynthetic carbon fixation and photochemical performance of a coccolithophore, Gephyrocapsa oceanica, grown under high, future (1,000 µatm) and low, current (390 µatm) CO2 levels, under regimes of fluctuating irradiances with or without UVR. Under both CO2 levels, fluctuating irradiances, as compared with constant irradiance, led to lower nonphotochemical quenching and less UVR-induced inhibition of carbon fixation and photosystem II electron transport. The cells grown under high CO2 showed a lower photosynthetic carbon fixation rate but lower nonphotochemical quenching and less ultraviolet B (280-315 nm)-induced inhibition. Ultraviolet A (315-400 nm) led to less enhancement of the photosynthetic carbon fixation in the high-CO2-grown cells under fluctuating irradiance. Our data suggest that ocean acidification and fast mixing or fluctuation of solar radiation will act synergistically to lower carbon fixation by G. oceanica, although ocean acidification may decrease ultraviolet B-related photochemical inhibition.
Resumo:
We compared particle data from a moored video camera system with sediment trap derived fluxes at ~1100 m depth in the highly dynamic coastal upwelling system off Cape Blanc, Mauritania. Between spring 2008 and winter 2010 the trap collected settling particles in 9-day intervals, while the camera recorded in-situ particle abundance and size-distribution every third day. Particle fluxes were highly variable (40-1200 mg m**-2 d**-1) and followed distinct seasonal patterns with peaks during spring, summer and fall. The particle flux patterns from the sediment traps correlated to the total particle volume captured by the video camera, which ranged from1 to 22 mm**3 l**-1. The measured increase in total particle volume during periods of high mass flux appeared to be better related to increases in the particle concentrations, rather than to increased average particle size. We observed events that had similar particle fluxes, but showed clear differences in particle abundance and size-distribution, and vice versa. Such observations can only be explained by shifts in the composition of the settling material, with changes both in particle density and chemical composition. For example, the input of wind-blown dust from the Sahara during September 2009 led to the formation of high numbers of comparably small particles in the water column. This suggests that, besides seasonal changes, the composition of marine particles in one region underlies episodical changes. The time between the appearance of high dust concentrations in the atmosphere and the increase lithogenic flux in the 1100 m deep trap suggested an average settling rate of 200 m d**-1, indicating a close and fast coupling between dust input and sedimentation of the material.
Resumo:
Physical properties measurements provide a relatively inexpensive and fast way to obtain high-resolution estimates of the variations in sedimentological properties. To better resolve the validity and cause of the geophysical signals measured by the Ocean Drilling Program (ODP) shipboard multisensor track (MST) instruments, 223 x 10 cm**3 core samples were collected at 4 cm intervals in Core 167-1016B-17H at the California Margin Conception Transect for the measurements of index properties, carbonate content, and opal content. This core was chosen because hole-to-hole stratigraphic correlation of MST data suggested that Core 17H corresponds to a depth interval that displays the greatest range of amplitude of many physical properties.
Resumo:
The study of glacier fronts combines different geomatics measurement techniques as the classic survey using total station or theodolite, technical GNSS (Global Navigation Satellite System), using laser-scanner or using photogrammetry (air or ground). The measure by direct methods (classical surveying and GNSS) is useful and fast when accessibility to the glaciers fronts is easy, while it is practically impossible to realize, in the case of glacier fronts that end up in the sea (tide water glaciers). In this paper, a methodology that combines photogrammetric methods and other techniques for lifting the front of the glacier Johnsons, inaccessible is studied. The images obtained from the front, come from a non-metric digital camera; its georeferencing to a global coordinate system is performed by measuring points GNSS support in accessible areas of the glacier front side and applying methods of direct intersection in inaccessible points of the front, taking measurements with theodolite. The result of observations obtained were applied to study the temporal evolution (1957-2014) of the position of the Johnsons glacier front and the position of the Argentina, Las Palmas and Sally Rocks lobes front (Hurd glacier).
Resumo:
The ability to view and interact with 3D models has been happening for a long time. However, vision-based 3D modeling has only seen limited success in applications, as it faces many technical challenges. Hand-held mobile devices have changed the way we interact with virtual reality environments. Their high mobility and technical features, such as inertial sensors, cameras and fast processors, are especially attractive for advancing the state of the art in virtual reality systems. Also, their ubiquity and fast Internet connection open a path to distributed and collaborative development. However, such path has not been fully explored in many domains. VR systems for real world engineering contexts are still difficult to use, especially when geographically dispersed engineering teams need to collaboratively visualize and review 3D CAD models. Another challenge is the ability to rendering these environments at the required interactive rates and with high fidelity. In this document it is presented a virtual reality system mobile for visualization, navigation and reviewing large scale 3D CAD models, held under the CEDAR (Collaborative Engineering Design and Review) project. It’s focused on interaction using different navigation modes. The system uses the mobile device's inertial sensors and camera to allow users to navigate through large scale models. IT professionals, architects, civil engineers and oil industry experts were involved in a qualitative assessment of the CEDAR system, in the form of direct user interaction with the prototypes and audio-recorded interviews about the prototypes. The lessons learned are valuable and are presented on this document. Subsequently it was prepared a quantitative study on the different navigation modes to analyze the best mode to use it in a given situation.
Resumo:
The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.
Resumo:
This paper describes new approaches to improve the local and global approximation (matching) and modeling capability of Takagi–Sugeno (T-S) fuzzy model. The main aim is obtaining high function approximation accuracy and fast convergence. The main problem encountered is that T-S identification method cannot be applied when the membership functions are overlapped by pairs. This restricts the application of the T-S method because this type of membership function has been widely used during the last 2 decades in the stability, controller design of fuzzy systems and is popular in industrial control applications. The approach developed here can be considered as a generalized version of T-S identification method with optimized performance in approximating nonlinear functions. We propose a noniterative method through weighting of parameters approach and an iterative algorithm by applying the extended Kalman filter, based on the same idea of parameters’ weighting. We show that the Kalman filter is an effective tool in the identification of T-S fuzzy model. A fuzzy controller based linear quadratic regulator is proposed in order to show the effectiveness of the estimation method developed here in control applications. An illustrative example of an inverted pendulum is chosen to evaluate the robustness and remarkable performance of the proposed method locally and globally in comparison with the original T-S model. Simulation results indicate the potential, simplicity, and generality of the algorithm. An illustrative example is chosen to evaluate the robustness. In this paper, we prove that these algorithms converge very fast, thereby making them very practical to use.