979 resultados para Wave Parameters
Resumo:
A new source of low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal planar "unidirectional" RF current driven through a specially designed internal antenna configuration has been developed. The experimental results of the investigation of the optical and global argon plasma parameters by the optical and Langmuir probes are presented. It is shown that the spatial profiles of the electron density, the effective electron temperature and plasma potential feature a great deal of the radial and axial uniformity compared with conventional sources of inductively coupled plasmas with external at coil configurations. The measurements also reveal a weak azimuthal dependence of the global plasma parameters at low values of the input RF power, which was earlier predicted theoretically. The azimuthal dependence of the global plasma parameters vanishes at high input RF powers. Moreover, under certain conditions, the plasma becomes unstable due to spontaneous transitions between low-density (electrostatic, E) and high-density (electromagnetic, H) operating modes. Excellent uniformity of high-density plasmas makes the plasma reactor promising for various plasma processing applications and surface engineering.
Resumo:
The process of resonant generation of the second harmonic of the surface wave, propagating along the external magnetic field at the plasma-metal boundary is considered. The periodic process of the energy exchange between the first and the second harmonics of the wave is investigated as well. It is shown that the process under study is periodic one. The analytical expressions are obtained and numerical estimations are presented for characteristic time of nonlinear energy exchange. The self-action effect of main frequency wave is account for harmonics interaction. It is shown that the effect leads to nonlinear phenomena attenuation, which expresses in narrowing possible value interval of harmonics amplitudes during energy exchange process and in increasing the nonlinear interaction time.
Resumo:
A nonlinear process is considered of the surface wave third harmonics generation in a slowing-down semiconductor-metal structure. The process is conditioned by non-parabolicity of the charge carrier dispersion law. It is shown that in narrow-gap semiconducting materials it is necessary to account for the process together with the surface wave second harmonics generation conditioned by nonlinearity of quasi-hydrodynamics and the Maxwell equations. The conclusion is made that the third harmonies amplitude in narrow-gap semiconductors may exceed substantially the signal amplitude at the 3w frequency in a gas plasma and be of the same order with the surface waves second harmonies amplitude.
Resumo:
Effect of near-wall transition regions on the surface wave propagation in a magnetoactive plasma layer bounded by a metal. It is shown that the account for inhomogeneities of plasma density or magnetic field causes an appearance of coupling between surface waves, propagating across magnetic field and localized near difference boundaries of the structure. The resonance damping of surface waves is analyzed too.
Microwave plasma discharge produced and sustained by the surface wave propagating along a metal wire
Resumo:
A theoretical model of the plasma discharge in a metal cylinder pumped by an operating gas of an arbitrary nature is presented. The ionization is carried out by the surface wave (SW) propagating along a coaxial metal wire. The model includes the local dispersion relation, the energy balance equation, and the relation between the absorbed power per unit length and the local plasma density. Two typical regimes of the discharge are analyzed. In both regimes the axial and radial profiles of the plasma density of the electromagnetic field components and of the SW intensity are obtained. The possible use of the obtained results in plasma technology are discussed.
Resumo:
In this study, the process of the resonant second harmonics generation of the submillimeter (SM), which is of interest for design of the semiconductor frequency multipliers is evaluated. Particularly, the possibility to use the semiconductor superlattice-metal structures as an effective second harmonics generator is demonstrated.
Resumo:
The results of theoretical investigations of two-channel waveguide modulator based on Surface Wave (SW) propagation are presented. The structure studied consists of two n-type semiconductor waveguide channels separated from each other by a dielectric gap and coated by a metal. The SW propagates at the semiconductor-metal interface across an external magnetic field which is parallel to the interface. An external dc voltage is applied to the metal surface of one channel to provide a small phase shift between two propagating modes. In a coupled mode approximation, two possible regimes of operation of the structure, namely as a directional coupler and as an electro-optical modulator, are considered. Our results suggest new applications in millimeter and submillimeter wave solid-state electronics and integrated optics.
Resumo:
The structure of a microwave gas discharge produced and sustained by a surface wave (SW) propagating along a cylindrical metal antenna with a dielectric coating is studied. The SW that produces and sustains the microwave gas discharge propagates along an external magnetic field and has an eigenfrequency in the range between the electron cyclotron and electron plasma frequencies. The presence of a dielectric (vacuum) sheath region separating the antenna from the plasma is assumed. The spatial distributions of the produced plasma density, electromagnetic fields, energy flow density, phase velocity and reverse skin depth of the SW are obtained analytically and numerically.
Resumo:
Failures on rolling element bearings usually originate from cracks that are detectable even in their early stage of propogation by properly analyzing vibration signals measured in the proximity of the bearing. Due to micro-slipping in the roller-races contact, damage-induced vibration signals belong to the family of quasi-periodic signals with a strong second order cyclostationary component. Cyclic coherence and its integrated form are widely considered as the most suitable tools for bearing fault diagnostics and their theoretical bases have been already consolidated. This paper presents how to correctly set the parameters of the cyclostationary analysis tool to be implemented in an automatable algorithm. In the first part of the paper some general guidelines are provided for the specific application. These considerations are further verified, applying cyclostationary tools to data collected in an experimental campaign on a specific test-rig.
Resumo:
AIMS The aims of the study are to characterize changes in JK-1 (FAM134B) at the DNA level in colorectal adenocarcinoma and adenoma and exploring the possible correlations with clinical and pathological features. METHOD JK-1 gene DNA copy number changes were studied in 211 colorectal carcinomas, 32 colorectal adenoma and 20 colorectal non-cancer colorectal tissue samples by real-time quantitative polymerase chain reaction. The results were correlated with clinical and pathological parameters. RESULTS Colorectal adenomas were more likely to be amplified than deleted with regard to JK-1 (FAM134B) DNA copy number change. The copy number level of JK-1 (FAM134B) DNA in colorectal adenocarcinomas was significantly lower in comparison to colorectal adenomas. Changes in JK-1 (FAM134B) DNA copy number were associated with histological subtypes, and cancer stage. Lower copy numbers were associated with higher tumor stage, lymph node stage and overall pathological stage of cancer. Conversely, higher DNA copy numbers were detected more often in the mucinous adenocarcinoma. CONCLUSIONS This is the first study showing significant correlations of the JK-1 (FAM134B) gene copy number alterations with clinical and pathological features in a large cohort of pre-invasive and invasive colorectal malignancies. The changes in DNA copy number associated with progression of colorectal malignancies reflect that JK-1 (FAM134B) gene could play a role in controlling some steps in development of the invasive phenotypes.
Resumo:
Large arrays and networks of carbon nanotubes, both single- and multi-walled, feature many superior properties which offer excellent opportunities for various modern applications ranging from nanoelectronics, supercapacitors, photovoltaic cells, energy storage and conversation devices, to gas- and biosensors, nanomechanical and biomedical devices etc. At present, arrays and networks of carbon nanotubes are mainly fabricated from the pre-fabricated separated nanotubes by solution-based techniques. However, the intrinsic structure of the nanotubes (mainly, the level of the structural defects) which are required for the best performance in the nanotube-based applications, are often damaged during the array/network fabrication by surfactants, chemicals, and sonication involved in the process. As a result, the performance of the functional devices may be significantly degraded. In contrast, directly synthesized nanotube arrays/networks can preclude the adverse effects of the solution-based process and largely preserve the excellent properties of the pristine nanotubes. Owing to its advantages of scale-up production and precise positioning of the grown nanotubes, catalytic and catalyst-free chemical vapor depositions (CVD), as well as plasma-enhanced chemical vapor deposition (PECVD) are the methods most promising for the direct synthesis of the nanotubes.
Resumo:
Mutation of the BRAF gene is common in thyroid cancer. Follicular variant of papillary thyroid carcinoma is a variant of papillary thyroid carcinoma that has created continuous diagnostic controversies among pathologists. The aims of this study are to (1) investigate whether follicular variant of papillary thyroid carcinoma has a different pattern of BRAF mutation than conventional papillary thyroid carcinoma in a large cohort of patients with typical features of follicular variant of papillary thyroid carcinoma and (2) to study the relationship of clinicopathological features of papillary thyroid carcinomas with BRAF mutation. Tissue blocks from 76 patients with diagnostic features of papillary thyroid carcinomas (40 with conventional type and 36 with follicular variant) were included in the study. From these, DNA was extracted and BRAF V600E mutations were detected by polymerase chain reaction followed by restriction enzyme digestion and sequencing of exon 15. Analysis of the data indicated that BRAF V600E mutation is significantly more common in conventional papillary thyroid carcinoma (58% versus 31%, P = .022). Furthermore, the mutation was often noted in female patients (P = .017), in high-stage cancers (P = .034), and in tumors with mild lymphocytic thyroiditis (P = .006). We concluded that follicular variant of papillary thyroid carcinoma differs from conventional papillary thyroid carcinoma in the rate of BRAF mutation. The results of this study add further information indicating that mutations in BRAF play a role in thyroid cancer development and progression.
Resumo:
A high-frequency-link (HFL) micro inverter with a front-end diode clamped multi-level inverter and a grid-connected half-wave cycloconverter is proposed. The diode clamped multi-level inverter with an auxiliary capacitor is used to generate high-frequency (HF) three level quasi square-wave output and it is fed into a series resonant tank to obtain high frequency continuous sinusoidal current. The obtained continuous sinusoidal current is modulated by using the grid-connected half-wave cycloconverter to obtain grid synchronized output current in phase with the grid voltage. The phase shift power modulation is used with auxiliary capacitor at the front-end multi-level inverter to have soft-switching. The phase shift between the HFL resonant current and half-wave cycloconverter input voltage is modulated to obtain grid synchronized output current.
Resumo:
Sewer main chokes (blockages) are a key performance indicator for Australian water utilities. Blockages caused by tree roots often result in wastewater overflow posing an environmental and health risk and also requiring service interruptions to repair asset. The purpose of the research project outlined in this paper was to understand the role of environmental parameters, in particular soil type and tree density, in determining the propensity of a sewer to become blocked. The paper demonstrates the application of spatial analysis to inform and communicate the results of the analysis. GIS was used to explore the relationship between tree density and previously recorded sewer blockages for a Melbourne utility. Initial results from the research reveal a relationship between increased tree densities and occurrence of sewer blockages. An improved understanding of the influence of environmental parameters on the inherent risk of sewer blockage will enable asset managers to identify those assets requiring proactive management in order to minimise service interruptions, repairs and environmental impacts.