965 resultados para Wave Energy
Resumo:
The design, construction and subsequent operation of the 75 kW oscillating water column wave power plant on the Isle of Islay has provided a significant insight into the practicality of wave power conversion. The development of wave power plant poses a significant design and construction challenge for not only civil but also mechanical and electrical engineers. The plant must withstand the immense forces imposed during storms, yet efficiently convert the slow cyclic motion of waves into a useful energy source such as electricity and do so at a price competitive with other forms of generation. In addition, the hostile marine environment hampers the construction process and the variability of the wave resource poses problems for electrical control and grid integration. Many sceptics consider wave power conversion to be too difficult, too expensive and too variable to justify the effort and expense necessary to develop this technology. However, the authors contend that with modular wave power systems developed from the practical experience gained with the Islay plant, wave power is a viable technology with a considerable world market potential. However, this technology is still at the early stages of development and will require the construction of a number of different prototypes before there is extensive commercial exploitation.
Resumo:
This note presents a simple model for prediction of liquid hold-up in two-phase horizontal pipe flow for the stratified roll wave (St+RW) flow regime. Liquid hold-up data for horizontal two-phase pipe flow [1, 2, 3, 4, 5 and 6] exhibit a steady increase with liquid velocity and a more dramatic fall with increasing gas rate as shown by Hand et al. [7 and 8] for example. In addition the liquid hold-up is reported to show an additional variation with pipe diameter. Generally, if the initial liquid rate for the no-gas flow condition gives a liquid height below the pipe centre line, the flow patterns pass successively through the stratified (St), stratified ripple (St+R), stratified roll wave, film plus droplet (F+D) and finally the annular (A+D, A+RW, A+BTS) regimes as the gas rate is increased. Hand et al. [7 and 8] have given a detailed description of this progression in flow regime development and definitions of the patterns involved. Despite the fact that there are over one hundred models which have been developed to predict liquid hold-up, none have been shown to be universally useful, while only a handful have proven to be applicable to specific flow regimes [9, 10, 11 and 12]. One of the most intractable regimes to predict has been the stratified roll wave pattern where the liquid hold-up shows the most dramatic change with gas flow rate. It has been suggested that the momentum balance-type models, which give both hold-up and pressure drop prediction, can predict universally for all flow regimes but particularly in the case of the difficult stratified roll wave pattern. Donnelly [1] recently demonstrated that the momentum balance models experienced some difficulties in the prediction of this regime. Without going into lengthy details, these models differ in the assumed friction factor or shear stress on the surfaces within the pipe particularly at the liquid–gas interface. The Baker–Jardine model [13] when tested against the 0.0454 m i.d. data of Nguyen [2] exhibited a wide scatter for both liquid hold-up and pressure drop as shown in Fig. 1. The Andritsos–Hanratty model [14] gave better prediction of pressure drop but a wide scatter for liquid hold-up estimation (cf. Fig. 2) when tested against the 0.0935 m i.d. data of Hand [5]. The Spedding–Hand model [15], shown in Fig. 3 against the data of Hand [5], gave improved performance but was still unsatisfactory with the prediction of hold-up for stratified-type flows. The MARS model of Grolman [6] gave better prediction of hold-up (cf. Fig. 4) but deterioration in the estimation of pressure drop when tested against the data of Nguyen [2]. Thus no method is available that will accurately predict liquid hold-up across the whole range of flow patterns but particularly for the stratified plus roll wavy regime. The position is particularly unfortunate since the stratified-type regimes are perhaps the most predominant pattern found in multiphase lines.
Resumo:
The triple differential cross sections for ionization of atomic hydrogen by electron impact are analysed in the case of coplanar, asymmetric geometry within the framework of second- order distorted wave theory. Detailed calculations are performed without making any approximations (other than numerical) in the evaluation of the second-order amplitude. The present results are compared with experimental measurements and other theoretical calculations for incident energies of 250, 150 and 54.4 eV. It is found that the second-order calculations represent a marked improvement over the results obtained from first-order theories for impact energies of 150 eV and higher. The close agreement between the present second-order plane wave calculation and those of Byron et al calculated using the closure approximation at an incident energy of 250 eV implies that the closure approximation is valid for this energy. The large difference between the present second-order distorted wave calculations and experiment at an incident energy of 54.4 eV suggests that higher order effects are important for incident energies less than 100 eV.
Resumo:
Simple electron capture processes are studied using an orthonormal two state continuum-distorted-wave (CDW) basis. The suitability of the basis set is tested by comparing predictions for total and differential cross sections with available experimental data. Overall good agreement is obtained and the authors conclude that a relatively small CDW basis set may be suitable to model a wide variety of low-energy collisions if the members of this extended set are astutely chosen.
Resumo:
A simple plane wave solution of the Schrodinger-Helmholtz equation is a quantum eigenfunction obeying both energy and linear momentum correspondence principles. Inclusion of the outgoing wave with scattering amplitude f asymptotic development of the plane wave, we show that there is a problem with angular momentum when we consider forward scattering at the point of closest approach and at large impact parameter given semiclassically by (l + 1/2)/k where l is the azimuthal quantum number and may be large (J. Leech et al., Phys. Rev. Lett. 88. 257901 (2002)). The problem is resolved via non- uniform, non-standard analysis involving the Heaviside step function, unifying classical, semiclassical and quantum mechanics, and the treatment is extended to the case of pure Coulomb scattering.
Resumo:
The continuum distorted-wave eikonal initial-state (CDW-EIS) theory of Crothers and McCann (J Phys B 1983, 16, 3229) used to describe ionization in ion-atom collisions is generalized (G) to GCDW-EIS to incorporate the azimuthal angle dependence of each CDW in the final-state wave function. This is accomplished by the analytic continuation of hydrogenic-like wave functions from below to above threshold, using parabolic coordinates and quantum numbers including magnetic quantum numbers, thus providing a more complete set of states. At impact energies lower than 25 keVu(-1), the total ionization cross-section falls off, with decreasing energy, too quickly in comparison with experimental data. The idea behind and motivation for the GCDW-EIS model is to improve the theory with respect to experiment by including contributions from nonzero magnetic quantum numbers. We also therefore incidentally provide a new derivation of the theory of continuum distorted waves for zero magnetic quantum numbers while simultaneously generalizing it. (C) 2004 Wiley Periodicals, Inc.
Resumo:
An analytical nonlinear description of field-line wandering in partially statistically magnetic systems was proposed recently. In this article the influence of the wave spectrum in the energy range onto field-line random walk is investigated by applying this formulation. It is demonstrated that in all considered cases we clearly obtain a superdiffusive behavior of the field-lines. If the energy range spectral index exceeds unity a free-streaming behavior of the field-lines can be found for all relevant length-scales of turbulence. Since the superdiffusive results obtained for the slab model are exact, it seems that superdiffusion is the normal behavior of field-line wandering.
Resumo:
The nonlinear nature of the rf absorption in a helicon-produced plasma was recently evidenced by the observation that the helicon wave damping as well as the level of short-scale electrostatic fluctuations excited in the helicon plasma increases with rf power. Correlation methods using electrostatic probes as well as microwave back-scattering at the upper-hybrid resonance allow identifying the fluctuations as ion-sound and Trivelpiece– Gould waves satisfying the frequency and wavenumber matching conditions for the parametric decay instability of the helicon pump wave. Furthermore, the growth rates and thresholds deduced from their temporal growth are in good agreement with theoretical predictions for the parametric decay instability that takes into account realistic damping rates for the decay waves as well as a non-vanishing parallel wavenumber of the helicon pump. The close relationship between the rf absorption and the excitation of the fluctuations was investigated in more detail by performing time- and space-resolved measurements of the helicon wave field and the electrostatic fluctuations.
Resumo:
We use many-body theory to find the asymptotic behaviour of second-order correlation corrections to the energies and positron annihilation rates in many- electron systems with respect to the angular momenta l of the single-particle orbitals included. The energy corrections decrease as 1/(l+1/2)4, in agreement with the result of Schwartz, whereas the positron annihilation rate has a slower 1/(l+1/2)2 convergence rate. We illustrate these results by numerical calculations of the energies of Ne and Kr and by examining results from extensive con?guration-interaction calculations of PsH binding and annihilation.
Resumo:
When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.
Resumo:
A dusty plasma crystalline configuration with equal charge dust grains and mass is considered. Both charge and mass of each dust species are taken to be constant. Two differential equations for a two-dimensional hexagonal crystal on the basis of a Yukawa-type potential energy and a
Resumo:
The amplitude modulation of dust lattice waves (DLWs) propagating in a two-dimensional hexagonal dust crystal is investigated in a continuum approximation, accounting for the effect of dust charge polarization (dressed interactions). A dusty plasma crystalline configuration with constant dust grain charge and mass is considered. The dispersion relation and the group velocity for DLWs are determined for wave propagation in both longitudinal and transverse directions. The reductive perturbation method is used to derive a (2+1)-dimensional nonlinear Schrodinger equation (NLSE). New expressions for the coefficients of the NLSE are derived and compared, for a Yukawa-type potential energy and for a
Resumo:
The states of a boson pair in a one-dimensional double-well potential are investigated. Properties of the ground and lowest excited states of this system are studied, including the two-particle wave function, momentum pair distribution, and entanglement. The effects of varying both the barrier height and the effective interaction strength are investigated.