930 resultados para Visual and auditory processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678-757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I-III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kitten's auditory cortex (including the first and second auditory fields AI and AII) is known to send transient axons to either ipsi- or contralateral visual areas 17 and 18. By the end of the first postnatal month the transitory axons, but not their neurons of origin, are eliminated. Here we investigated where these neurons project after the elimination of the transitory axon. Eighteen kittens received early (postnatal day (pd) 2 - 5) injections of long lasting retrograde fluorescent traces in visual areas 17 and 18 and late (pd 35 - 64) injections of other retrograde fluorescent tracers in either hemisphere, mostly in areas known to receive projections from AI and AII in the adult cat. The middle ectosylvian gyrus was analysed for double-labelled neurons in the region corresponding approximately to AI and AII. Late injections in the contralateral (to the analysed AI, AII) hemisphere including all of the known auditory areas, as well as some visual and 'association' areas, did not relabel neurons which had had transient projections to either ipsi- or contralateral visual areas 17 - 18. Thus, AI and AII neurons after eliminating their transient juvenile projections to visual areas 17 and 18 do not project to the other hemisphere. In contrast, relabelling was obtained with late injections in several locations in the ipsilateral hemisphere; it was expressed as per cent of the population labelled by the early injections. Few neurons (0 - 2.5%) were relabelled by large injections in the caudal part of the posterior ectosylvian gyrus and the adjacent posterior suprasylvian sulcus (areas DP, P, VP). Multiple injections in the middle ectosylvian gyrus relabelled a considerably larger percentage of neurons (13%). Single small injections in the middle ectosylvian gyrus (areas AI, AII), the caudal part of the anterior ectosylvian gyrus and the rostral part of the posterior ectosylvian gyrus relabelled 3.1 - 7.0% of neurons. These neurons were generally near (<2.0 mm) the outer border of the late injection sites. Neurons with transient projections to ipsi- or contralateral visual areas 17 and 18 were relabelled in similar proportions by late injections at any given location. Thus, AI or AII neurons which send a transitory axon to ipsi- or contralateral visual areas 17 and 18 are most likely to form short permanent cortical connections. In that respect, they are similar to medial area 17 neurons that form transitory callosal axons and short permanent axons to ipsilateral visual areas 17 and 18.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent findings suggest that the visuo-spatial sketchpad (VSSP) may be divided into two sub-components processing dynamic or static visual information. This model may be useful to elucidate the confusion of data concerning the functioning of the VSSP in schizophrenia. The present study examined patients with schizophrenia and matched controls in a new working memory paradigm involving dynamic (the Ball Flight Task - BFT) or static (the Static Pattern Task - SPT) visual stimuli. In the BFT, the responses of the patients were apparently based on the retention of the last set of segments of the perceived trajectory, whereas control subjects relied on a more global strategy. We assume that the patients' performances are the result of a reduced capacity in chunking visual information since they relied mainly on the retention of the last set of segments. This assumption is confirmed by the poor performance of the patients in the static task (SPT), which requires a combination of stimulus components into object representations. We assume that the static/dynamic distinction may help us to understand the VSSP deficits in schizophrenia. This distinction also raises questions about the hypothesis that visuo-spatial working memory can simply be dissociated into visual and spatial sub-components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rats, like other crepuscular animals, have excellent auditory capacities and they discriminate well between different sounds [Heffner HE, Heffner RS, Hearing in two cricetid rodents: wood rats (Neotoma floridana) and grasshopper mouse (Onychomys leucogaster). J Comp Psychol 1985;99(3):275-88]. However, most experimental literature concerning spatial orientation almost exclusively emphasizes the use of visual landmarks [Cressant A, Muller RU, Poucet B. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J Neurosci 1997;17(7):2531-42; and Goodridge JP, Taube JS. Preferential use of the landmark navigational system by head direction cells in rats. Behav Neurosci 1995;109(1):49-61]. To address the important issue of whether rats are able to achieve a place navigation task relative to auditory beacons, we designed a place learning task in the water maze. We controlled cue availability by conducting the experiment in total darkness. Three auditory cues did not allow place navigation whereas three visual cues in the same positions did support place navigation. One auditory beacon directly associated with the goal location did not support taxon navigation (a beacon strategy allowing the animal to find the goal just by swimming toward the cue). Replacing the auditory beacons by one single visual beacon did support taxon navigation. A multimodal configuration of two auditory cues and one visual cue allowed correct place navigation. The deletion of the two auditory or of the one visual cue did disrupt the spatial performance. Thus rats can combine information from different sensory modalities to achieve a place navigation task. In particular, auditory cues support place navigation when associated with a visual one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate perception of the temporal order of sensory events is a prerequisite in numerous functions ranging from language comprehension to motor coordination. We investigated the spatio-temporal brain dynamics of auditory temporal order judgment (aTOJ) using electrical neuroimaging analyses of auditory evoked potentials (AEPs) recorded while participants completed a near-threshold task requiring spatial discrimination of left-right and right-left sound sequences. AEPs to sound pairs modulated topographically as a function of aTOJ accuracy over the 39-77ms post-stimulus period, indicating the engagement of distinct configurations of brain networks during early auditory processing stages. Source estimations revealed that accurate and inaccurate performance were linked to bilateral posterior sylvian regions activity (PSR). However, activity within left, but not right, PSR predicted behavioral performance suggesting that left PSR activity during early encoding phases of pairs of auditory spatial stimuli appears critical for the perception of their order of occurrence. Correlation analyses of source estimations further revealed that activity between left and right PSR was significantly correlated in the inaccurate but not accurate condition, indicating that aTOJ accuracy depends on the functional decoupling between homotopic PSR areas. These results support a model of temporal order processing wherein behaviorally relevant temporal information--i.e. a temporal 'stamp'--is extracted within the early stages of cortical processes within left PSR but critically modulated by inputs from right PSR. We discuss our results with regard to current models of temporal of temporal order processing, namely gating and latency mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is an edited transcription of a virtual symposium promoted by the Brazilian Society of Neuroscience and Behavior (SBNeC). Although the dynamics of sensory and motor representations have been one of the most studied features of the central nervous system, the actual mechanisms of brain plasticity that underlie the dynamic nature of sensory and motor maps are not entirely unraveled. Our discussion began with the notion that the processing of sensory information depends on many different cortical areas. Some of them are arranged topographically and others have non-topographic (analytical) properties. Besides a sensory component, every cortical area has an efferent output that can be mapped and can influence motor behavior. Although new behaviors might be related to modifications of the sensory or motor representations in a given cortical area, they can also be the result of the acquired ability to make new associations between specific sensory cues and certain movements, a type of learning known as conditioning motor learning. Many types of learning are directly related to the emotional or cognitive context in which a new behavior is acquired. This has been demonstrated by paradigms in which the receptive field properties of cortical neurons are modified when an animal is engaged in a given discrimination task or when a triggering feature is paired with an aversive stimulus. The role of the cholinergic input from the nucleus basalis to the neocortex was also highlighted as one important component of the circuits responsible for the context-dependent changes that can be induced in cortical maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies have shown that dyslexic children present a deficiency in the temporal processing of auditory stimuli applied in rapid succession. However, discussion continues concerning the way this deficiency can be influenced by temporal variables of auditory processing tests. Therefore, the purpose of the present study was to analyze by auditory temporal processing tests the effect of temporal variables such as interstimulus intervals, stimulus duration and type of task on dyslexic children compared to a control group. Of the 60 children evaluated, 33 were dyslexic (mean age = 10.5 years) and 27 were normal controls (mean age = 10.8 years). Auditory processing tests assess the abilities of discrimination and ordering of stimuli in relation to their duration and frequency. Results showed a significant difference in the average accuracy of control and dyslexic groups considering each variable (interstimulus intervals: 47.9 ± 5.5 vs 37.18 ± 6.0; stimulus duration: 61.4 ± 7.6 vs 50.9 ± 9.0; type of task: 59.9 ± 7.9 vs 46.5 ± 9.0) and the dyslexic group demonstrated significantly lower performance in all situations. Moreover, there was an interactive effect between the group and the duration of stimulus variables for the frequency-pattern tests, with the dyslexic group demonstrating significantly lower results for short durations (53.4 ± 8.2 vs 48.4 ± 11.1), as opposed to no difference in performance for the control group (62.2 ± 7.1 vs 60.6 ± 7.9). These results support the hypothesis that associates dyslexia with auditory temporal processing, identifying the stimulus-duration variable as the only one that unequally influenced the performance of the two groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les troubles du spectre autistique (TSA) sont actuellement caractérisés par une triade d'altérations, incluant un dysfonctionnement social, des déficits de communication et des comportements répétitifs. L'intégration simultanée de multiples sens est cruciale dans la vie quotidienne puisqu'elle permet la création d'un percept unifié. De façon similaire, l'allocation d'attention à de multiples stimuli simultanés est critique pour le traitement de l'information environnementale dynamique. Dans l'interaction quotidienne avec l'environnement, le traitement sensoriel et les fonctions attentionnelles sont des composantes de base dans le développement typique (DT). Bien qu'ils ne fassent pas partie des critères diagnostiques actuels, les difficultés dans les fonctions attentionnelles et le traitement sensoriel sont très courants parmi les personnes autistes. Pour cela, la présente thèse évalue ces fonctions dans deux études séparées. La première étude est fondée sur la prémisse que des altérations dans le traitement sensoriel de base pourraient être à l'origine des comportements sensoriels atypiques chez les TSA, tel que proposé par des théories actuelles des TSA. Nous avons conçu une tâche de discrimination de taille intermodale, afin d'investiguer l'intégrité et la trajectoire développementale de l'information visuo-tactile chez les enfants avec un TSA (N = 21, âgés de 6 à18 ans), en comparaison à des enfants à DT, appariés sur l’âge et le QI de performance. Dans une tâche à choix forcé à deux alternatives simultanées, les participants devaient émettre un jugement sur la taille de deux stimuli, basé sur des inputs unisensoriels (visuels ou tactiles) ou multisensoriels (visuo-tactiles). Des seuils différentiels ont évalué la plus petite différence à laquelle les participants ont été capables de faire la discrimination de taille. Les enfants avec un TSA ont montré une performance diminuée et pas d'effet de maturation aussi bien dans les conditions unisensorielles que multisensorielles, comparativement aux participants à DT. Notre première étude étend donc des résultats précédents d'altérations dans le traitement multisensoriel chez les TSA au domaine visuo-tactile. Dans notre deuxième étude, nous avions évalué les capacités de poursuite multiple d’objets dans l’espace (3D-Multiple Object Tracking (3D-MOT)) chez des adultes autistes (N = 15, âgés de 18 à 33 ans), comparés à des participants contrôles appariés sur l'âge et le QI, qui devaient suivre une ou trois cibles en mouvement parmi des distracteurs dans un environnement de réalité virtuelle. Les performances ont été mesurées par des seuils de vitesse, qui évaluent la plus grande vitesse à laquelle des observateurs sont capables de suivre des objets en mouvement. Les individus autistes ont montré des seuils de vitesse réduits dans l'ensemble, peu importe le nombre d'objets à suivre. Ces résultats étendent des résultats antérieurs d'altérations au niveau des mécanismes d'attention en autisme quant à l'allocation simultanée de l'attention envers des endroits multiples. Pris ensemble, les résultats de nos deux études révèlent donc des altérations chez les TSA quant au traitement simultané d'événements multiples, que ce soit dans une modalité ou à travers des modalités, ce qui peut avoir des implications importantes au niveau de la présentation clinique de cette condition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel framework referred to as collaterally confirmed labelling (CCL) is proposed, aiming at localising the visual semantics to regions of interest in images with textual keywords. Both the primary image and collateral textual modalities are exploited in a mutually co-referencing and complementary fashion. The collateral content and context-based knowledge is used to bias the mapping from the low-level region-based visual primitives to the high-level visual concepts defined in a visual vocabulary. We introduce the notion of collateral context, which is represented as a co-occurrence matrix of the visual keywords. A collaborative mapping scheme is devised using statistical methods like Gaussian distribution or Euclidean distance together with collateral content and context-driven inference mechanism. We introduce a novel high-level visual content descriptor that is devised for performing semantic-based image classification and retrieval. The proposed image feature vector model is fundamentally underpinned by the CCL framework. Two different high-level image feature vector models are developed based on the CCL labelling of results for the purposes of image data clustering and retrieval, respectively. A subset of the Corel image collection has been used for evaluating our proposed method. The experimental results to-date already indicate that the proposed semantic-based visual content descriptors outperform both traditional visual and textual image feature models. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent theories propose that semantic representation and sensorimotor processing have a common substrate via simulation. We tested the prediction that comprehension interacts with perception, using a standard psychophysics methodology.While passively listening to verbs that referred to upward or downward motion, and to control verbs that did not refer to motion, 20 subjects performed a motion-detection task, indicating whether or not they saw motion in visual stimuli containing threshold levels of coherent vertical motion. A signal detection analysis revealed that when verbs were directionally incongruent with the motion signal, perceptual sensitivity was impaired. Word comprehension also affected decision criteria and reaction times, but in different ways. The results are discussed with reference to existing explanations of embodied processing and the potential of psychophysical methods for assessing interactions between language and perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the nature and cause of Specific Language Impairment (SLI) by reviewing recent research in sentence processing of children with SLI compared to typically developing (TD) children and research in infant speech perception. These studies have revealed that children with SLI are sensitive to syntactic, semantic, and real-world information, but do not show sensitivity to grammatical morphemes with low phonetic saliency, and they show longer reaction times than age-matched controls. TD children from the age of 4 show trace reactivation, but some children with SLI fail to show this effect, which resembles the pattern of adults and TD children with low working memory. Finally, findings from the German Language Development (GLAD) Project have revealed that a group of children at risk for SLI had a history of an auditory delay and impaired processing of prosodic information in the first months of their life, which is not detectable later in life. Although this is a single project that needs to be replicated with a larger group of children, it provides preliminary support for accounts of SLI which make an explicit link between an early deficit in the processing of phonology and later language deficits, and the Computational Complexity Hypothesis that argues that the language deficit in children with SLI lies in difficulties integrating different types of information at the interfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Language processing plays a crucial role in language development, providing the ability to assign structural representations to input strings (e.g., Fodor, 1998). In this paper we aim at contributing to the study of children's processing routines, examining the operations underlying the auditory processing of relative clauses in children compared to adults. English-speaking children (6–8;11) and adults participated in the study, which employed a self-paced listening task with a final comprehension question. The aim was to determine (i) the role of number agreement in object relative clauses in which the subject and object NPs differ in terms of number properties, and (ii) the role of verb morphology (active vs. passive) in subject relative clauses. Even though children's off-line accuracy was not always comparable to that of adults, analyses of reaction times results support the view that children have the same structural processing reflexes observed in adults.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iconicity is the non-arbitrary relation between properties of a phonological form and semantic content (e.g. “moo”, “splash”). It is a common feature of both spoken and signed languages, and recent evidence shows that iconic forms confer an advantage during word learning. We explored whether iconic forms conferred a processing advantage for 13 individuals with aphasia following left-hemisphere stroke. Iconic and control words were compared in four different tasks: repetition, reading aloud, auditory lexical decision and visual lexical decision. An advantage for iconic words was seen for some individuals in all tasks, with consistent group effects emerging in reading aloud and auditory lexical decision. Both these tasks rely on mapping between semantics and phonology. We conclude that iconicity aids spoken word processing for individuals with aphasia. This advantage may be due to a stronger connection between semantic information and phonological forms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TEMA: programa de remediação auditivo-visual computadorizado em escolares com dislexia do desenvolvimento. OBJETIVOS: verificar a eficácia de um programa de remediação auditivo-visual computadorizado em escolares com dislexia do desenvolvimento. Dentre os objetivos específicos, o estudo teve como finalidade comparar o desempenho cognitivo-lingüístico de escolares com dislexia do desenvolvimento com escolares bons leitores; comparar os achados dos procedimentos de avaliação de pré e pós testagem em escolares com dislexia submetidos e não submetidos ao programa; e, por fim, comparar os achados do programa de remediação em escolares com dislexia e escolares bons leitores submetidos ao programa de remediação. MÉTODO: participaram deste estudo 20 escolares, sendo o grupo I (GI) subdivido em: GIe, composto de cinco escolares com dislexia do desenvolvimento submetidos ao programa, e GIc, composto de cinco escolares com dislexia do desenvolvimento não submetidos ao programa. O grupo II (GII) foi subdividido em GIIe, composto de cinco escolares bons leitores submetidos à remediação, e GIIc, composto de cinco escolares bons leitores não submetidos à remediação. Foi realizado o programa de remediação auditivo-visual computadorizado Play-on. RESULTADOS: os resultados deste estudo revelaram que o GI apresentou desempenho inferior em habilidade de processamento auditivo e de consciência fonológica em comparação com o GII em situação de pré-testagem. Entretanto, o GIe apresentou desempenho semelhante ao GII em situação de pós-testagem, evidenciando a eficácia da remediação auditivo-visual em escolares com dislexia do desenvolvimento. CONCLUSÃO: o estudo evidenciou a eficácia do programa de remediação auditivo-visual em escolares com dislexia do desenvolvimento.