1000 resultados para Virtual compton scattering
Resumo:
Surface-enhanced Raman scattering (SERS) of pyridine adsorbed on ultrathin nanocrystalline Au and Ag films generated at the liquid-liquid interface has been investigated. The shifts and intensification of bands formed with these films comprising metal nanoparticles are comparable to those found with other types of Au and Ag substrates. SERS of rhodamine 6G adsorbed on Ag films has also been studied. The results demonstrate that nanocrystalline metal films prepared by the simple method involving the organic-aqueous interface can be used effectively for SERS investigations.
Resumo:
The classical problem of surface water-wave scattering by two identical thin vertical barriers submerged in deep water and extending infinitely downwards from the same depth below the mean free surface, is reinvestigated here by an approach leading to the problem of solving a system of Abel integral equations. The reflection and transmission coefficients are obtained in terms of computable integrals. Known results for a single barrier are recovered as a limiting case as the separation distance between the two barriers tends to zero. The coefficients are depicted graphically in a number of figures which are identical with the corresponding figures given by Jarvis (J Inst Math Appl 7:207-215, 1971) who employed a completely different approach involving a Schwarz-Christoffel transformation of complex-variable theory to solve the problem.
Resumo:
This paper reviews the earlier experimental studies on light scattering in quartz near its phase transition, which ultimately laid the foundation for the basic concept of the soft mode. The theoretical work on the subject has been briefly referred to. A list of ferroelectrics in which soft mode studies have been carried out near TC using laser Raman spectroscopy is appended. Reference has also been made to the appearance of the central mode with abnormal increase in intensity at TC.
Resumo:
Visual problems may be the first symptoms of diabetes. There have been several reports of transient changes in refraction of people newly diagnosed with diabetes. Visual acuity and refraction may be affected when there are ocular biometric changes. Small but significant biometrical changes have been found by some authors during hyperglycaemia and during reduction of hyperglycaemia.[4] Here, we describe a case of type 2 diabetes that was detected from ocular straylight and intraocular thickness measurements...
Resumo:
This work develops methods to account for shoot structure in models of coniferous canopy radiative transfer. Shoot structure, as it varies along the light gradient inside canopy, affects the efficiency of light interception per unit needle area, foliage biomass, or foliage nitrogen. The clumping of needles in the shoot volume also causes a notable amount of multiple scattering of light within coniferous shoots. The effect of shoot structure on light interception is treated in the context of canopy level photosynthesis and resource use models, and the phenomenon of within-shoot multiple scattering in the context of physical canopy reflectance models for remote sensing purposes. Light interception. A method for estimating the amount of PAR (Photosynthetically Active Radiation) intercepted by a conifer shoot is presented. The method combines modelling of the directional distribution of radiation above canopy, fish-eye photographs taken at shoot locations to measure canopy gap fraction, and geometrical measurements of shoot orientation and structure. Data on light availability, shoot and needle structure and nitrogen content has been collected from canopies of Pacific silver fir (Abies amabilis (Dougl.) Forbes) and Norway spruce (Picea abies (L.) Karst.). Shoot structure acclimated to light gradient inside canopy so that more shaded shoots have better light interception efficiency. Light interception efficiency of shoots varied about two-fold per needle area, about four-fold per needle dry mass, and about five-fold per nitrogen content. Comparison of fertilized and control stands of Norway spruce indicated that light interception efficiency is not greatly affected by fertilization. Light scattering. Structure of coniferous shoots gives rise to multiple scattering of light between the needles of the shoot. Using geometric models of shoots, multiple scattering was studied by photon tracing simulations. Based on simulation results, the dependence of the scattering coefficient of shoot from the scattering coefficient of needles is shown to follow a simple one-parameter model. The single parameter, termed the recollision probability, describes the level of clumping of the needles in the shoot, is wavelength independent, and can be connected to previously used clumping indices. By using the recollision probability to correct for the within-shoot multiple scattering, canopy radiative transfer models which have used leaves as basic elements can use shoots as basic elements, and thus be applied for coniferous forests. Preliminary testing of this approach seems to explain, at least partially, why coniferous forests appear darker than broadleaved forests in satellite data.
Resumo:
We consider an obstacle scattering problem for linear Beltrami fields. A vector field is a linear Beltrami field if the curl of the field is a constant times itself. We study the obstacles that are of Neumann type, that is, the normal component of the total field vanishes on the boundary of the obstacle. We prove the unique solvability for the corresponding exterior boundary value problem, in other words, the direct obstacle scattering model. For the inverse obstacle scattering problem, we deduce the formulas that are needed to apply the singular sources method. The numerical examples are computed for the direct scattering problem and for the inverse scattering problem.
Resumo:
Neutron Scattering and Molecular Dynamics Evidence for Levitation Effect in Nanopores ... Neutron scattering measurements and molecular dynamics simulations have been carried out on the three isomers of pentane (neopentane (neo), isopentane (iso), and n-pentane (n-)) adsorbed in zeolite NaY. ... In order to understand this surprising dependence, the dimensionless levitation parameter, γ, for atomic systems may be modified to suit molecular systems.
Resumo:
Brillouin scattering by one-phonon-two-magnon interacting excitations in ferromagnetic dielectrics is discussed. The basic light scattering mechanism is taken to be the modulation of the density-dependent optical dielectric polarizability of the medium by the dynamic strain field generated by the longitudinal acoustic (LA) phonons. The renormalization effects arising from the scattering of phonons by the two-magnon creation-annihilation processes have, however, been taken into account. Via these interactions, the Brillouin components corresponding to the two-magnon excitations are reflected indirectly in the spectrum of the phonon scattered light as line-broadening of the otherwise relatively sharp Brillouin doublet. The present mechanism is shown to be dominant in a clean saturated ferromagnetic dielectric with large magneto-strictive coupling constant, and with the magnetic ions in the orbitally quenched states. Following the linear response theory, an expression has been derived for the spectral density of the scattered light as a function of temperature, scattering angle, and the strength of the externally applied magnetic field. Some estimates are given for the line-width and line-shift of the Brillouin components for certain typical choice of parameters involved. The results are discussed in relation to some available calculations on the ultrasonic attenuation in ferromagnetic insulators at low temperatures.
Resumo:
Access to quality higher education is challenging for many Western Australians that live outside the metropolitan area. In 2010, the School of Education moved to flexible delivery of a fully online Bachelor of Education degree for their non -metropolitan students. The new model of delivery allows access for students from any location provided they have a computer and an internet connection. A number of academic staff had previously used an asynchronous environment to deliver learning modules housed within a learning management system (LMS) but had not used synchronous software with their students. To enhance the learning environment and to provide high quality learning experiences to students learning at a distance, the adoption of synchronous software (Elluminate Live) was introduced. This software is a real-time virtual classroom environment that allows for communication through Voice over Internet Protocol (VoIP) and videoconferencing, along with a large number of collaboration tools to engage learners. This research paper reports on the integration of a live e-learning solution into the current LMS environment. Qualitative data were collected from academic staff through informal interviews and participant observation. The findings discuss (i) perceived level of support; (ii) identification of strategies used to create an effective online teacher presence; (iii) the perceived impact on the students' learning outcomes; and (iv) guidelines for professional development to enhance pedagogy within the live e-learning environment.
Resumo:
The quality of an online university degree is paramount to the student, the reputation of the university and most importantly, the profession that will be entered. At the School of Education within Curtin University, we aim to ensure that students within rural and remote areas are provided with high quality degrees equal to their city counterparts who access face-to-face classes on campus.In 2010, the School of Education moved to flexible delivery of a fully online Bachelor of Education degree for their rural students. In previous years, the degree had been delivered in physical locations around the state. Although this served the purpose for the time, it restricted the degree to only those rural students who were able to access the physical campus. The new model in 2010 allows access for students in any rural area who have a computer and an internet connection, regardless of their geographical location. As a result enrolments have seen a positive increase in new students. Academic staff had previously used an asynchronous environment to deliver learning modules housed within a learning management system (LMS). To enhance the learning environment and to provide high quality learning experiences to students learning at a distance, the adoption of synchronous software was introduced. This software is a real-time virtual classroom environment that allows for communication through Voice over Internet Protocol (VoIP) and videoconferencing, along with a large number of collaboration tools to engage learners. This research paper reports on the professional development of academic staff to integrate a live e-learning solution into their current LMS environment. It involved professional development, including technical orientation for teaching staff and course participants simultaneously. Further, pedagogical innovations were offered to engage the students in a collaborative learning environment. Data were collected from academic staff through semi-structured interviews and participant observation. The findings discuss the perceived value of the technology, problems encountered and solutions sought.
Resumo:
Australia is a vast land and access to quality higher education is challenging for many Australians that live outside the larger metropolitan areas. In 2010, the School of Education at an Australian university (Curtin University in Western Australia) moved to flexible delivery of a fully online Bachelor of Education degree for their rural students. The new model of delivery allows access for students from any location provided they have a computer and an internet connection.A number of teaching staff had previously used an asynchronous environment to deliver learning modules housed within a learning management system (LMS) but had not used synchronous software with their students. To enhance the learning environment and to provide high quality learning experiences to students learning at a distance, the adoption of synchronous software (Elluminate Live) was introduced. This software is a real-time virtual classroom environment that allows for communication through Voice over Internet Protocol (VoIP) and video conferencing, alongside a large number of collaboration tools to engage learners.This research paper reports on the integration of a live e-learning solution into the current Learning Management System (LMS) environment. Staff were interviewed about their perceptions and a questionnaire was administered to a sample of students to identify their experience with the synchronous software in order to inform future practice.
Resumo:
We study the analyticity in cosθ of the exact quantum-mechanical electric-charge-magnetic-monopole scattering amplitude by ascribing meaning to its formally divergent partial-wave expansion as the boundary value of an analytic function. This permits us to find an integral representation for the amplitude which displays its analytic structure. On the physical sheet we find only a branch-point singularity in the forward direction, while on each of the infinitely many unphysical sheets we find a logarithmic branch-point singularity in the backward direction as well as the same forward structure.
Resumo:
Mixed reality stories (MRS) unfold simultaneously in the physical and the virtual world. Advancements in digital technologies, which are now able to capture more contextual information about our physical environments, are enabling novel ways of blending the two worlds. To explore the process of creating stories from this perspective, we conducted a study with creative writers, in which we asked them to write a MRS script for outdoor running. While we saw instances of intentional connections between physical and virtual worlds in their work, we also observed the use of ambiguity or even deliberate contradiction with available contextual information. In this paper we discuss how these approaches can be beneficial for MRS and propose directions for future work.
Resumo:
This paper presents an optimization of the performance of a recently proposed virtual sliding target (VST) guidance scheme in terms of maximization of its launch envelope for three- dimensional (3-D) engagements. The objective is to obtain the launch envelope of the missile using the VST guidance scheme for different lateral launch angles with respect to the line of sight (LOS) and demonstrate its superiority over kinematics-based guidance laws like proportional navigation (PN). The VST scheme uses PN as its basic guidance scheme and exploits the relation between the atmospheric properties, missile aerodynamic characteristics, and the optimal trajectory of the missile. The missile trajectory is shaped by controlling the instantaneous position and the speed of a virtual target which the missile pursues during the midcourse phase. In the proposed method it is shown that an appropriate value of initial position for the virtual target in 3-D, combined with optimized virtual target parameters, can significantly improve the launch envelope performance. The paper presents the formulation of the optimization problem, obtains the approximate models used to make the optimization problem more tractable, and finally presents the optimized performance of the missile in terms of launch envelope and shows significant improvement over kinematic-based guidance laws. The paper also proposes modification to the basic VST scheme. Some simulations using the full-fledged six degrees-of-freedom (6-DOF) models are also presented to validate the models and technique used.