974 resultados para Ventilação natural urbana
Resumo:
The natural convection thermal boundary layer adjacent to an inclined flat plate and inclined walls of an attic space subject to instantaneous and ramp heating and cooling is investigated. A scaling analysis has been performed to describe the flow behaviour and heat transfer. Major scales quantifying the flow velocity, flow development time, heat transfer and the thermal and viscous boundary layer thicknesses at different stages of the flow development are established. Scaling relations of heating-up and cooling-down times and heat transfer rates have also been reported for the case of attic space. The scaling relations have been verified by numerical simulations over a wide range of parameters. Further, a periodic temperature boundary condition is also considered to show the flow features in the attic space over diurnal cycles.
Resumo:
Magnetohydrodynamic (MHD) natural convection laminar flow from an iso-thermal horizontal circular cylinder immersed in a fluid with viscosity proportional to a linear function of temperature will be discussed with numerical simulations. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equa-tions are reduced to convenient form, which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distributions of the fluid as well as heat transfer characteristics, namely the shearing stress and the local heat transfer rate in terms of the local skin-friction coefficient and the local Nusselt number for a wide range of magnetohydrodynamic parameter, viscosity-variation parameter and viscous dissipation parameter. MHD flow in this geometry with temperature dependent viscosity is absent in the literature. The results obtained from the numerical simulations have been veri-fied by two methodologies.
Resumo:
In order to mimic the formation of archerite in cave minerals, the mineral analogue has been synthesised. The cave mineral is formed by the reaction of the chemicals in bat guano with calcite substrates. X-ray diffraction proves that the synthesised archerite analogue was pure. The vibrational spectra of the synthesised mineral are compared with that of the natural cave mineral. Raman and infrared bands are assigned to H2PO4-, OH and NH stretching and bending vibrations. The Raman band at 917 cm-1 is assigned to the HOP stretching vibration of the H2PO4- units. Bands in the 1200 to 1800 cm-1 region are associated with NH4+ bending modes. Vibrational spectroscopy enables the molecular structure of archerite to be analysed.
Resumo:
An improved scaling analysis and direct numerical simulations are performed for the unsteady natural convection boundary layer adjacent to a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages: a start-up stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as the numerical results. Previous scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scale for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency of the flow. However, those scalings perform very well with Rayleigh number and aspect ratio dependency. In this study, a modified Prandtl number scaling is developed using a triple layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the modified scaling performs considerably better than the previous scaling.
Resumo:
During the course of several natural disasters in recent years, Twitter has been found to play an important role as an additional medium for many–to–many crisis communication. Emergency services are successfully using Twitter to inform the public about current developments, and are increasingly also attempting to source first–hand situational information from Twitter feeds (such as relevant hashtags). The further study of the uses of Twitter during natural disasters relies on the development of flexible and reliable research infrastructure for tracking and analysing Twitter feeds at scale and in close to real time, however. This article outlines two approaches to the development of such infrastructure: one which builds on the readily available open source platform yourTwapperkeeper to provide a low–cost, simple, and basic solution; and, one which establishes a more powerful and flexible framework by drawing on highly scaleable, state–of–the–art technology.
Resumo:
Natural convection in a triangular enclosure subject to non-uniformly cooling at the inclined surfaces and uniformly heating at the base is investigated numerically. The numerical simulations of the unsteady flows over a range of Rayleigh numbers and aspect ratios are carried out using Finite Volume Method. Since the upper surface is cooled and the bottom surface is heated, the air flow in the enclosure is potentially unstable to Rayleigh Benard instability. It is revealed that the transient flow development in the enclosure can be classified into three distinct stages; an early stage, a transitional stage and a steady stage. It is also found that the flow inside the enclosure strongly depends on the governing parameters; Rayleigh number and aspect ratio. The asymmetric behaviour of the flow about the geometric centre line is discussed in detailed. The heat transfer through the roof and the ceiling as a form of Nusselt number is also reported in this study.
Resumo:
Heat transfer through an attic space into or out of buildings is an important issue for attic-shaped houses in both hot and cold climates. One of the important objectives for design and construction of houses is to provide thermal comfort for occupants. In the present energy-conscious society, it is also a requirement for houses to be energy efficient, i.e. the energy consumption for heating or air-conditioning houses must be minimized. Relevant to these objectives, research into heat transfer in attics has been conducted for about three decades. The transient behaviour of an attic space is directly relevant to our daily life. Certain periods of the day or night may be considered as having a constant ambient temperature (e.g. during 11am - 2pm or 11pm - 2am). However, at other times during the day or night the ambient temperature changes with time (e.g. between 5am - 9am or 5pm - 9pm). Therefore, the analysis of steady state solution is not sufficient to describe the fluid flow and heat transfer in the attic space. The discussion of the transient development of the boundary is required. A theoretical understanding of the transient behaviour of the flow in the enclosure is performed through scaling analysis for sudden and ramp heating conditions. A proper identification of the timescales, the velocity and the thickness relevant to the flow that develops inside the cavity makes it possible to predict theoretically the basic flow features that will survive once the thermal flow in the enclosure reaches a steady state. Those scaling predictions have been verified by a series of numerical simulations.
Resumo:
It is found in the literature that the existing scaling results for the boundary layer thickness, velocity and steady state time for the natural convection flow over an evenly heated plate provide a very poor prediction of the Prandtl number dependency of the flow. However, those scalings provide a good prediction of two other governing parameters’ dependency, the Rayleigh number and the aspect ratio. Therefore, an improved scaling analysis using a triple-layer integral approach and direct numerical simulations have been performed for the natural convection boundary layer along a semi-infinite flat plate with uniform surface heat flux. This heat flux is a ramp function of time, where the temperature gradient on the surface increases with time up to some specific time and then remains constant. The growth of the boundary layer strongly depends on the ramp time. If the ramp time is sufficiently long, the boundary layer reaches a quasi steady mode before the growth of the temperature gradient is completed. In this mode, the thermal boundary layer at first grows in thickness and then contracts with increasing time. However, if the ramp time is sufficiently short, the boundary layer develops differently, but after the wall temperature gradient growth is completed, the boundary layer develops as though the startup had been instantaneous.
Resumo:
A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including an early stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scales for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a modifed Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.
Resumo:
Numerically investigation of natural convection within a differentially heated modified square enclosure with sinusoidally corrugated side walls has been performed for different values of Rayleigh number. The fluid inside the enclosure considered is air and is quiescent, initially. The top and bottom surfaces are flat and considered as adiabatic. Results reveal three main stages: an initial stage, a transitory or oscillatory stage and a steady stage for the development of natural convection flow inside the corrugated cavity. The numerical scheme is based on the finite element method adapted to triangular non-uniform mesh element by a non-linear parametric solution algorithm. Investigation has been performed for the Rayleigh number, Ra ranging from 105 to 108 with variation of corrugation amplitude and frequency. Constant physical properties for the fluid medium have been assumed. Results have been presented in terms of the isotherms, streamlines, temperature plots, average Nusselt numbers, traveling waves and thermal boundary layer thickness plots, temperature and velocity profiles. The effects of sudden differential heating and its consequent transient behavior on fluid flow and heat transfer characteristics have been observed for the range of governing parameters. The present results show that the transient phenomena are greatly influenced by the variation of the Rayleigh Number with corrugation amplitude and frequency.
Resumo:
Background: Radiation-induced skin reaction (RISR) is one of the most common and distressing side effects of radiotherapy in patients with cancer. It is featured with swelling, redness, itching, pain, breaks in skin, discomfort, and a burning sensation. There is a lack of convincing evidence supporting any single practice in the prevention or management of RISR. Methods/Designs: This double-blinded randomised controlled trial aims to investigate the effects of a natural oil-based emulsion containing allantoin (as known as Moogoo Udder Cream®) versus aqueous cream in reducing RISR, improving pain, itching and quality of life in this patient group. One group will receive Moogoo Udder Cream®. Another group will receive aqueous cream. Outcome measures will be collected using patient self-administered questionnaire, interviewer administered questionnaire and clinician assessment at commencement of radiotherapy, weekly during radiotherapy, and four weeks after the completion of radiotherapy. Discussion: Despite advances of radiologic advances and supportive care, RISR are still not well managed. There is a lack of efficacious interventions in managing RISR. While anecdotal evidence suggests that Moogoo Udder Cream® may be effective in managing RISR, research is needed to substantiate this claim. This paper presents the design of a double blind randomised controlled trial that will evaluate the effects of Moogoo Udder Cream® versus aqueous cream for managing in RISR in patients with cancer. Trial registration: ACTRN 12612000568819
Resumo:
Many species engage in polyandry, resulting in the potential for sexual selection to continue post-copulation through sperm competition and/or cryptic female choice. The relative importance of pre- vs. post-copulatory processes remains unknown for most species despite this information being fundamental for understanding the evolutionary consequences of sexual selection. The Australian fruit fly Drosophila serrata has become a prominent model system for studying precopulatory sexual selection, such as mating preferences and their influence on the evolution of sexually selected traits. Here, we investigated polyandry and the potential for post-copulatory sexual selection in this species using indirect paternity analysis. We genotyped 21 wild-caught and 19 laboratory-reared mothers and their offspring (a total of 787 flies) at six microsatellite loci and found extensive polyandry, with all broods surveyed having at least two sires. Female remating rates were higher than in other Drosophila surveyed to date and no significant differences were found between laboratory and field populations. Additionally, we found evidence for biased sperm usage in several broods of D. serrata. Paternity skew occurred more frequently in broods from the field population than the laboratory one, suggesting differences between the two environments in the level of post-copulatory sexual selection. Our data suggest that D. serrata represents a promising system for studying the interaction between pre- and post-copulatory sexual selection in driving the evolution of sexually selected phenotypes.
Resumo:
The inner city Brisbane suburbs of the West End peninsula are poised for redevelopment. Located within walking distance to CBD workplaces, home to Queensland’s highest value cultural precinct, and high quality riverside parklands, there is currently a once-in-a-lifetime opportunity to redevelop parts of the suburb to create a truly urban neighbourhood. According to a local community association, local residents agree and embrace the concept of high-density living, but are opposed to the high-rise urban form (12 storeys) advocated by the City’s planning authority (BCC, 2011) and would prefer to see medium-rise (5-8 storeys) medium-density built form. Brisbane experienced a major flood event which inundated the peninsula suburbs of West End in summer January 2011. The vulnerability of taller buildings to the vagaries of climate and more extreme weather events and their reliance on main electricity was exposed when power outages immediately before, during and after the flood disaster seriously limited occupants’ access and egress when elevators were disabled. Not all buildings were flooded but dwellings quickly became unliveable due to disabled air-conditioning. Some tall buildings remained uninhabitable for several weeks after the event. This paper describes an innovative design research method applied to the complex problem of resilient, sustainable neighbourhood form in subtropical cities, in which a thorough comparative analysis of a range of multiple-dwelling types has revealed the impact that government policy regarding design of the physical environment has on a community’s resilience. The outcomes advocate the role of climate-responsive design in averting the rising human capital and financial costs of natural disasters and climate change.
Resumo:
An ongoing challenge in behavioral economics is to understand the variations observed in risk attitudes as a function of their environmental context. Of particular interest is the effect of wealth on risk attitudes. The research in this area has however faced two constraints: the difficulty to study the causal effects of large changes in wealth, and the causal effects of losses on risk behavior. The present paper address this double limitation by providing evidence of the variation of risk attitude after large losses using a natural disaster (Brisbane floods) as the setting for a natural experiment.