970 resultados para Vascular endothelial Growth Factor
Resumo:
Photoreceptors and retinal pigment epithelial cells (RPE) targeting remains challenging in ocular gene therapy. Viral gene transfer, the only method having reached clinical evaluation, still raises safety concerns when administered via subretinal injections. We have developed a novel transfection method in the adult rat, called suprachoroidal electrotransfer (ET), combining the administration of nonviral plasmid DNA into the suprachoroidal space with the application of an electrical field. Optimization of injection, electrical parameters and external electrodes geometry using a reporter plasmid, resulted in a large area of transfected tissues. Not only choroidal cells but also RPE, and potentially photoreceptors, were efficiently transduced for at least a month when using a cytomegalovirus (CMV) promoter. No ocular complications were recorded by angiographic, electroretinographic, and histological analyses, demonstrating that under selected conditions the procedure is devoid of side effects on the retina or the vasculature integrity. Moreover, a significant inhibition of laser induced-choroidal neovascularization (CNV) was achieved 15 days after transfection of a soluble vascular endothelial growth factor receptor-1 (sFlt-1)-encoding plasmid. This is the first nonviral gene transfer technique that is efficient for RPE targeting without inducing retinal detachment. This novel minimally invasive nonviral gene therapy method may open new prospects for human retinal therapies.
Resumo:
The phosphoinositide 3-kinase (PI3K) family has multiple vascular functions, but the specific regulatory isoform supporting lymphangiogenesis remains unidentified. Here, we report that deletion of the Pik3r1 gene, encoding the regulatory subunits p85alpha, p55alpha, and p50alpha impairs lymphatic sprouting and maturation, and causes abnormal lymphatic morphology, without major impact on blood vessels. Pik3r1 deletion had the most severe consequences among gut and diaphragm lymphatics, which share the retroperitoneal anlage, initially suggesting that the Pik3r1 role in this vasculature is anlage-dependent. However, whereas lymphatic sprouting toward the diaphragm was arrested, lymphatics invaded the gut, where remodeling and valve formation were impaired. Thus, cell-origin fails to explain the phenotype. Only the gut showed lymphangiectasia, lymphatic up-regulation of the transforming growth factor-beta co-receptor endoglin, and reduced levels of mature vascular endothelial growth factor-C protein. Our data suggest that Pik3r1 isoforms are required for distinct steps of embryonic lymphangiogenesis in different organ microenvironments, whereas they are largely dispensable for hemangiogenesis.
Resumo:
Retinal effects of systemically administered drugs are rare due to the hematoretinal barriers that protect the retina from circulating active principles. However, some compounds may have direct or indirect toxic effects on the retina through direct interaction with a specific receptor or due to their accumulation within pigment of uveal cells. In the latter case, toxicity is dose-dependent and may be observed years after cessation of medication, as observed with antimalarial drugs. Anti-infective and anti-inflammatory agents, particularly glucocorticoids, are currently injected peri- or intraocularly. The mechanisms and the exact toxicity of glucocorticoids on the retina remain poorly understood. More recently, anti-VEGF has been specifically developed for the treatment of retinal diseases. However, the long-term blockade of VEGF on normal retinal physiology should be determined taking into account VEGF and VEGF receptors expression in the normal and pathologic retina. Whilst enormous advances are made in the treatment of retinal diseases, basic research is still required to define more accurately the molecular targets of drugs to improve their benefits and reduce their potential side effects.
Resumo:
Training has been shown to induce cardioprotection. The mechanisms involved remain still poorly understood. Aims of the study were to examine the relevance of training intensity on myocardial protection against ischemia/reperfusion (I/R) injury, and to which extent the beneficial effects persist after training cessation in rats. Sprague-Dawley rats trained at either low (60% [Formula: see text]) or high (80% [Formula: see text]) intensity for 10 weeks. An additional group of highly trained rats was detrained for 4 weeks. Untrained rats served as controls. At the end of treatment, rats of all groups were split into two subgroups. In the former, rats underwent left anterior descending artery (LAD) ligature for 30 min, followed by 90-min reperfusion, with subsequent measurement of the infarct size. In the latter, biopsies were taken to measure heat-shock proteins (HSP) 70/72, vascular endothelial growth factor (VEGF) protein levels, and superoxide dismutase (SOD) activity. Training reduced infarct size proportionally to training intensity. With detraining, infarct size increased compared to highly trained rats, maintaining some cardioprotection with respect to controls. Cardioprotection was proportional to training intensity and related to HSP70/72 upregulation and Mn-SOD activity. The relationship with Mn-SOD was lost with detraining. VEGF protein expression was not affected by either training or detraining. Stress proteins and antioxidant defenses might be involved in the beneficial effects of long-term training as a function of training intensity, while HSP70 may be one of the factors accounting for the partial persistence of myocardial protection against I/R injury in detrained rats.
Resumo:
Most hematopoietic stem cells (HSC) in the bone marrow reside in a quiescent state and occasionally enter the cell cycle upon cytokine-induced activation. Although the mechanisms regulating HSC quiescence and activation remain poorly defined, recent studies have revealed a role of lipid raft clustering (LRC) in HSC activation. Here, we tested the hypothesis that changes in lipid raft distribution could serve as an indicator of the quiescent and activated state of HSCs in response to putative niche signals. A semi-automated image analysis tool was developed to map the presence or absence of lipid raft clusters in live HSCs cultured for just one hour in serum-free medium supplemented with stem cell factor (SCF). By screening the ability of 19 protein candidates to alter lipid raft dynamics, we identified six factors that induced either a marked decrease (Wnt5a, Wnt3a and Osteopontin) or increase (IL3, IL6 and VEGF) in LRC. Cell cycle kinetics of single HSCs exposed to these factors revealed a correlation of LRC dynamics and proliferation kinetics: factors that decreased LRC slowed down cell cycle kinetics, while factors that increased LRC led to faster and more synchronous cycling. The possibility of identifying, by LRC analysis at very early time points, whether a stem cell is activated and possibly committed upon exposure to a signaling cue of interest could open up new avenues for large-scale screening efforts.
Resumo:
We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the design of specific antiangiogenic strategy in diseases of the cornea.
Resumo:
The most important recent advance in the treatment of neovascular age-related macular degeneration (AMD) is the development of antivascular endothelial growth factor (anti-VEGF) therapeutic agents that preserve and improve visual acuity by arresting choroidal neovascular growth and reducing vascular permeability. Two anti-VEGF agents, ranibizumab and pegaptanib sodium, are currently approved by Swissmedic for the treatment of neovascular AMD. A third anti-VEGF agent, bevacizumab, is currently used as an off label treatment option for exsudative AMD. Other anti-VEGF agent strategies that have shown efficacy include among others, small interfering RNA agents to silence the VEGF gene and receptor and the fusion protein VEGF trap. Anti-VEGF therapies have been used successfully in the clinic, encouraging their use in the treatment of other neovascular and exudative eye diseases.
Resumo:
Background: Macular edema resulting from central retinal vein occlusion is effectively treated with anti-vascular endothelial growth factor injections. However, some patients need monthly retreatment and still show frequent recurrences. The purpose of this study was to evaluate the visual and anatomic outcomes of refractory macular edema resulting from ischemic central retinal vein occlusion in patients switched from ranibizumab to aflibercept intravitreal injections. Patients and Methods: We describe a retrospective series of patients followed in the Medical Retina Unit of the Jules Gonin Eye Hospital for macular edema due to ischemic central retinal vein occlusion, refractory to monthly retreatment with ranibizumab, and changed to aflibercept. Refractory macular edema was defined as persistence of any fluid at each visit one month after last injection during at least 6 months. All patients had to have undergone pan-retinal laser scan. Results: Six patients were identified, one of whom had a very short-term follow-up (excluded from statistics). Mean age was 57 ± 12 years. The mean changes in visual acuity and central macular thickness from baseline to switch were + 20.6 ± 20.3 ETDRS letters and - 316.4 ± 276.6 µm, respectively. The additional changes from before to after the switch were + 9.2 ± 9.5 ETDRS letters and - 248.0 ± 248.7 µm, respectively. The injection intervals could often be lengthened after the switch. Conclusions: Intravitreal aflibercept seems to be a promising alternative treatment for macular edema refractory to ranibizumab in ischemic central retinal vein occlusion.
Resumo:
The formation of new blood vessels, i.e. angiogenesis, is an important phenomenon during normal development and wound repair, as well as during various pathological processes, such as tumor growth and metastasis. Specific growth factors regulate angiogenesis by modulating the different cellular functions of endothelial cells (EC), and periendothelial cells, such as pericytes (PC) and smooth muscle cells (SMC), which interact with ECs in a paracrine manner. ErbB receptors form a subgroup of transmembrane receptor tyrosine kinases that interact with growth factors of the epidermal growth factor (EGF) family. ErbB receptors regulate behaviour of a variety of normal as well as tumor cell types. Cancer drugs that target epidermal growth factor receptor (EGFR, ErbB1) or ErbB2 receptor have been approved for clinical use. It has been speculated that part of the antitumor activity of ErbB inhibitor compounds result from an antiangiogenic mechanism. The results presented here indicate a role for endothelial-derived EGF-like growth factors heparin binding EGF-like growth factor (HB-EGF) and neuregulin-1 (NRG-1) in the paracrine regulation of angiogenesis. HB-EGF, EGFR and ErbB2 are shown to mediate interaction between ECs and SMCs in vitro, and gefitinib, an inhibitor of EGFR kinase activity, suppresses recruitment of PCs/SMCs in vivo. NRG-1 is shown to regulate EC functions in vitro and angiogenesis in vivo by indirect mechanisms involving vascular endothelial growth factor-A (VEGF-A) and VEGF receptor-2 (VEGFR-2). Furthermore, EGFR activity is demonstrated to regulate recruitment of bone marrow-derived perivascular cells during tumor neovascularization in vivo. These results indicate that ErbB signaling is involved in the cellular processes of new blood vessel formation. This study gives new information about the role of ErbB ligands and receptors in angiogenesis and vasculogenesis and about the mechanisms by which ErbB inhibitor drugs such as gefitinib affect tumor growth.
Resumo:
Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration.
Resumo:
NlmCategory="UNASSIGNED">This Perspective discusses the pertinence of variable dosing regimens with anti-vascular endothelial growth factor (VEGF) for neovascular age-related macular degeneration (nAMD) with regard to real-life requirements. After the initial pivotal trials of anti-VEGF therapy, the variable dosing regimens pro re nata (PRN), Treat-and-Extend, and Observe-and-Plan, a recently introduced regimen, aimed to optimize the anti-VEGF treatment strategy for nAMD. The PRN regimen showed good visual results but requires monthly monitoring visits and can therefore be difficult to implement. Moreover, application of the PRN regimen revealed inferior results in real-life circumstances due to problems with resource allocation. The Treat-and-Extend regimen uses an interval based approach and has become widely accepted for its ease of preplanning and the reduced number of office visits required. The parallel development of the Observe-and-Plan regimen demonstrated that the future need for retreatment (interval) could be reliably predicted. Studies investigating the observe-and-plan regimen also showed that this could be used in individualized fixed treatment plans, allowing for dramatically reduced clinical burden and good outcomes, thus meeting the real life requirements. This progressive development of variable dosing regimens is a response to the real-life circumstances of limited human, technical, and financial resources. This includes an individualized treatment approach, optimization of the number of retreatments, a minimal number of monitoring visits, and ease of planning ahead. The Observe-and-Plan regimen achieves this goal with good functional results. Translational Relevance: This perspective reviews the process from the pivotal clinical trials to the development of treatment regimens which are adjusted to real life requirements. The article discusses this translational process which- although not the classical interpretation of translation from fundamental to clinical research, but a subsequent process after the pivotal clinical trials - represents an important translational step from the clinical proof of efficacy to optimization in terms of patients' and clinics' needs. The related scientific procedure includes the exploration of the concept, evaluation of security, and finally proof of efficacy.
Resumo:
Mast cells are important in the initiation of ocular inflammation, but the consequences of mast cell degranulation on ocular pathology remain uncharacterized. We induced mast cell degranulation by local subconjunctival injection of compound 48/80. Initial degranulation of mast cells was observed in the choroid 15 minutes after the injection and increased up to 3 hours after injection. Clinical signs of anterior segment inflammation paralleled mast cell degranulation. With the use of optical coherence tomography, dilation of choroidal vessels and serous retinal detachments (SRDs) were observed and confirmed by histology. Subconjunctival injection of disodium cromoglycate significantly reduced the rate of SRDs, demonstrating the involvement of mast cell degranulation in posterior segment disorders. The infiltration of polymorphonuclear and macrophage cells was associated with increased ocular media concentrations of tumor necrosis factor-α, CXCL1, IL-6, IL-5, chemokine ligand 2, and IL-1β. Analysis of the amounts of vascular endothelial growth factor and IL-18 showed an opposite evolution of vascular endothelial growth factor compared with IL-18 concentrations, suggesting that they regulate each other's production. These findings suggest that the local degranulation of ocular mast cells provoked acute ocular inflammation, dilation, increased vascular permeability of choroidal vessels, and SRDs. The involvement of mast cells in retinal diseases should be further investigated. The pharmacologic inhibition of mast cell degranulation may be a potential target for intervention.
Resumo:
Glucocorticoids have been used for decades in the treatment of ocular disorders via topical, periocular, and more recently intravitreal routes. However, their exact mechanisms of action on ocular tissues remain imperfectly understood. Fortunately, two recently approved intravitreal sustained-release drug delivery systems have opened new perspectives for these very potent drugs. To date, among other retinal conditions, their label includes diabetic macular edema, for which a long-lasting therapeutic effect has been demonstrated both morphologically and functionally in several randomized clinical trials. The rate of ocular complications of intravitreal sustained-release steroids, mainly cataract formation and intraocular pressure elevation, is higher than with anti-vascular endothelial growth factor agents. Yet, a better understanding of the mechanisms underlying these adverse effects and the search for the minimal efficient dose should help optimize their therapeutic window.
Resumo:
An increased expression of nitric oxide synthase (NOS) has been observed in human colon carcinoma cell lines as well as in human gynecological, breast, and central nervous system tumors. This observation suggests a pathobiological role of tumor-associated NO production. Hence, we investigated NOS expression in human colon cancer in respect to tumor staging, NOS-expressing cell type(s), nitrotyrosine formation, inflammation, and vascular endothelial growth factor expression. Ca2+-dependent NOS activity was found in normal colon and in tumors but was significantly decreased in adenomas (P < 0.001) and carcinomas (Dukes' stages A-D: P < 0.002). Ca2+-independent NOS activity, indicating inducible NOS (NOS2), is markedly expressed in approximately 60% of human colon adenomas (P < 0.001 versus normal tissues) and in 20-25% of colon carcinomas (P < 0.01 versus normal tissues). Only low levels were found in the surrounding normal tissue. NOS2 activity decreased with increasing tumor stage (Dukes' A-D) and was lowest in colon metastases to liver and lung. NOS2 was detected in tissue mononuclear cells (TMCs), endothelium, and tumor epithelium. There was a statistically significant correlation between NOS2 enzymatic activity and the level of NOS2 protein detected by immunohistochemistry (P < 0.01). Western blot analysis of tumor extracts with Ca2+-independent NOS activity showed up to three distinct NOS2 protein bands at Mr 125,000-Mr 138,000. The same protein bands were heavily tyrosine-phosphorylated in some tumor tissues. TMCs, but not the tumor epithelium, were immunopositive using a polyclonal anti-nitrotyrosine antibody. However, only a subset of the NOS2-expressing TMCs stained positively for 3-nitrotyrosine, which is a marker for peroxynitrite formation. Furthermore, vascular endothelial growth factor expression was detected in adenomas expressing NOS2. These data are consistent with the hypothesis that excessive NO production by NOS2 may contribute to the pathogenesis of colon cancer progression at the transition of colon adenoma to carcinoma in situ.
Resumo:
PURPOSE: To investigate the incidence of outer retinal tubulation (ORT) in ranibizumab-treated neovascular age-related macular degeneration patients. METHODS: We included 480 consecutive patients (546 eyes) with neovascular age-related macular degeneration, who were treated with variable-dosing intravitreal ranibizumab, evaluated with spectral domain optical coherence tomography, and followed-up for a minimum period of 6 months. Optical coherence tomographies were evaluated for the first appearance of ORT, precursor signs, and type of underlying lesion. Visual acuity was also recorded. RESULTS: Outer retinal tubulation was observed in 30% of eyes during a mean follow-up period of 26.7 months (SD, 13.5). Kaplan-Meier survival analysis revealed that the ORT incidence (2.5, 17.5, 28.4, and 41.6% at baseline, after 1, 2, and 4 years, respectively) continuously increased, despite visually effective anti-vascular endothelial growth factor treatment. Outer retinal tubulation was associated with a poorer functional benefit. Lower baseline visual acuity was associated with a higher risk of developing ORT. CONCLUSION: Incidence of ORT continuously increases despite visually optimal anti-vascular endothelial growth factor treatment of age-related macular degeneration. Outer retinal tubulation might be considered a prognostic factor for functional outcome and is relevant to avoid overtreatment.