889 resultados para Validation of analytical methodology
Resumo:
The genotyping of human papillomaviruses (HPV) is essential for the surveillance of HPV vaccines. We describe and validate a low-cost PGMY-based PCR assay (PGMY-CHUV) for the genotyping of 31 HPV by reverse blotting hybridization (RBH). Genotype-specific detection limits were 50 to 500 genome equivalents per reaction. RBH was 100% specific and 98.61% sensitive using DNA sequencing as the gold standard (n = 1,024 samples). PGMY-CHUV was compared to the validated and commercially available linear array (Roche) on 200 samples. Both assays identified the same positive (n = 182) and negative samples (n = 18). Seventy-six percent of the positives were fully concordant after restricting the comparison to the 28 genotypes shared by both assays. At the genotypic level, agreement was 83% (285/344 genotype-sample combinations; κ of 0.987 for single infections and 0.853 for multiple infections). Fifty-seven of the 59 discordant cases were associated with multiple infections and with the weakest genotypes within each sample (P < 0.0001). PGMY-CHUV was significantly more sensitive for HPV56 (P = 0.0026) and could unambiguously identify HPV52 in mixed infections. PGMY-CHUV was reproducible on repeat testing (n = 275 samples; 392 genotype-sample combinations; κ of 0.933) involving different reagents lots and different technicians. Discordant results (n = 47) were significantly associated with the weakest genotypes in samples with multiple infections (P < 0.0001). Successful participation in proficiency testing also supported the robustness of this assay. The PGMY-CHUV reagent costs were estimated at $2.40 per sample using the least expensive yet proficient genotyping algorithm that also included quality control. This assay may be used in low-resource laboratories that have sufficient manpower and PCR expertise.
Resumo:
BACKGROUND: Genotypes obtained with commercial SNP arrays have been extensively used in many large case-control or population-based cohorts for SNP-based genome-wide association studies for a multitude of traits. Yet, these genotypes capture only a small fraction of the variance of the studied traits. Genomic structural variants (GSV) such as Copy Number Variation (CNV) may account for part of the missing heritability, but their comprehensive detection requires either next-generation arrays or sequencing. Sophisticated algorithms that infer CNVs by combining the intensities from SNP-probes for the two alleles can already be used to extract a partial view of such GSV from existing data sets. RESULTS: Here we present several advances to facilitate the latter approach. First, we introduce a novel CNV detection method based on a Gaussian Mixture Model. Second, we propose a new algorithm, PCA merge, for combining copy-number profiles from many individuals into consensus regions. We applied both our new methods as well as existing ones to data from 5612 individuals from the CoLaus study who were genotyped on Affymetrix 500K arrays. We developed a number of procedures in order to evaluate the performance of the different methods. This includes comparison with previously published CNVs as well as using a replication sample of 239 individuals, genotyped with Illumina 550K arrays. We also established a new evaluation procedure that employs the fact that related individuals are expected to share their CNVs more frequently than randomly selected individuals. The ability to detect both rare and common CNVs provides a valuable resource that will facilitate association studies exploring potential phenotypic associations with CNVs. CONCLUSION: Our new methodologies for CNV detection and their evaluation will help in extracting additional information from the large amount of SNP-genotyping data on various cohorts and use this to explore structural variants and their impact on complex traits.
Resumo:
The objective of this research is to determine whether the nationally calibrated performance models used in the Mechanistic-Empirical Pavement Design Guide (MEPDG) provide a reasonable prediction of actual field performance, and if the desired accuracy or correspondence exists between predicted and monitored performance for Iowa conditions. A comprehensive literature review was conducted to identify the MEPDG input parameters and the MEPDG verification/calibration process. Sensitivities of MEPDG input parameters to predictions were studied using different versions of the MEPDG software. Based on literature review and sensitivity analysis, a detailed verification procedure was developed. A total of sixteen different types of pavement sections across Iowa, not used for national calibration in NCHRP 1-47A, were selected. A database of MEPDG inputs and the actual pavement performance measures for the selected pavement sites were prepared for verification. The accuracy of the MEPDG performance models for Iowa conditions was statistically evaluated. The verification testing showed promising results in terms of MEPDG’s performance prediction accuracy for Iowa conditions. Recalibrating the MEPDG performance models for Iowa conditions is recommended to improve the accuracy of predictions. ****************** Large File**************************
Resumo:
High performance liquid chromatography (HPLC) is the reference method for measuring concentrations of antimicrobials in blood. This technique requires careful sample preparation. Protocols using organic solvents and/or solid extraction phases are time consuming and entail several manipulations, which can lead to partial loss of the determined compound and increased analytical variability. Moreover, to obtain sufficient material for analysis, at least 1 ml of plasma is required. This constraint makes it difficult to determine drug levels when blood sample volumes are limited. However, drugs with low plasma-protein binding can be reliably extracted from plasma by ultra-filtration with a minimal loss due to the protein-bound fraction. This study validated a single-step ultra-filtration method for extracting fluconazole (FLC), a first-line antifungal agent with a weak plasma-protein binding, from plasma to determine its concentration by HPLC. Spiked FLC standards and unknowns were prepared in human and rat plasma. Samples (240 microl) were transferred into disposable microtube filtration units containing cellulose or polysulfone filters with a 5 kDa cut-off. After centrifugation for 60 min at 15000g, FLC concentrations were measured by direct injection of the filtrate into the HPLC. Using cellulose filters, low molecular weight proteins were eluted early in the chromatogram and well separated from FLC that eluted at 8.40 min as a sharp single peak. In contrast, with polysulfone filters several additional peaks interfering with the FLC peak were observed. Moreover, the FLC recovery using cellulose filters compared to polysulfone filters was higher and had a better reproducibility. Cellulose filters were therefore used for the subsequent validation procedure. The quantification limit was 0.195 mgl(-1). Standard curves with a quadratic regression coefficient > or = 0.9999 were obtained in the concentration range of 0.195-100 mgl(-1). The inter and intra-run accuracies and precisions over the clinically relevant concentration range, 1.875-60 mgl(-1), fell well within the +/-15% variation recommended by the current guidelines for the validation of analytical methods. Furthermore, no analytical interference was observed with commonly used antibiotics, antifungals, antivirals and immunosuppressive agents. Ultra-filtration of plasma with cellulose filters permits the extraction of FLC from small volumes (240 microl). The determination of FLC concentrations by HPLC after this single-step procedure is selective, precise and accurate.
Resumo:
BACKGROUND: The Marburg Heart Score (MHS) aims to assist GPs in safely ruling out coronary heart disease (CHD) in patients presenting with chest pain, and to guide management decisions. AIM: To investigate the diagnostic accuracy of the MHS in an independent sample and to evaluate the generalisability to new patients. DESIGN AND SETTING: Cross-sectional diagnostic study with delayed-type reference standard in general practice in Hesse, Germany. METHOD: Fifty-six German GPs recruited 844 males and females aged ≥ 35 years, presenting between July 2009 and February 2010 with chest pain. Baseline data included the items of the MHS. Data on the subsequent course of chest pain, investigations, hospitalisations, and medication were collected over 6 months and were reviewed by an independent expert panel. CHD was the reference condition. Measures of diagnostic accuracy included the area under the receiver operating characteristic curve (AUC), sensitivity, specificity, likelihood ratios, and predictive values. RESULTS: The AUC was 0.84 (95% confidence interval [CI] = 0.80 to 0.88). For a cut-off value of 3, the MHS showed a sensitivity of 89.1% (95% CI = 81.1% to 94.0%), a specificity of 63.5% (95% CI = 60.0% to 66.9%), a positive predictive value of 23.3% (95% CI = 19.2% to 28.0%), and a negative predictive value of 97.9% (95% CI = 96.2% to 98.9%). CONCLUSION: Considering the diagnostic accuracy of the MHS, its generalisability, and ease of application, its use in clinical practice is recommended.
Resumo:
The use of laparoscopic surgery has increased rapidly. However, a technically feasible procedure is not automatically recommendable. Thus, if cholecystectomy and fundoplication are currently fully validated techniques, this does not hold true for gastroplasty and kidney harvesting for transplantation: these operations are feasible indeed but their efficacy remains to be proved. Laparoscopic oncology has been shown to be feasible too, but its efficacy has not been documented yet.
Resumo:
OBJECTIVES: Coarctation of the aorta is one of the most common congenital heart defects. Its diagnosis may be difficult in the presence of a patent ductus arteriosus, of other complex defects or of a poor echocardiographic window. We sought to demonstrate that the carotid-subclavian artery index (CSA index) and the isthmus-descending aorta ratio (I/D ratio), two recently described echocardiographic indexes, are effective in detection of isolated and complex aortic coarctations in children younger and older than 3 months of age. The CSA index is the ratio of the distal aortic arch diameter to the distance between the left carotid artery and the left subclavian artery. It is highly suggestive of a coarctation when it is <1.5. The I/D ratio defined as the diameter of the isthmus to the diameter of the descending aorta, suggests an aortic coarctation when it is less than 0.64. METHODS: This is a retrospective cohort study in a tertiary care children's hospital. Review of all echocardiograms in children aged 0-18 years with a diagnosis of coarctation seen at the author's institution between 1996 and 2006. An age- and sex-matched control group without coarctation was constituted. Offline echocardiographic measurements of the aortic arch were performed in order to calculate the CSA index and I/D ratio. RESULTS: Sixty-eight patients were included in the coarctation group, 24 in the control group. Patients with coarctation had a significantly lower CSA index (0.84+/-0.39 vs 2.65+/-0.82, p<0.0001) and I/D ratio (0.58+/-0.18 vs 0.98+/-0.19, p<0.0001) than patients in the control group. Associated cardiac defects and age of the child did not significantly alter the CSA index or the I/D ratio. CONCLUSIONS: A CSA index less than 1.5 is highly suggestive of coarctation independent of age and of the presence of other cardiac defects. I/D ratio alone is less specific than CSA alone at any age and for any associated cardiac lesion. The association of both indexes improves sensitivity and permits diagnosis of coarctation in all patients based solely on a bedside echocardiographic measurement.
Resumo:
A new device for the analyses of nurses' satisfaction has been developed and validated on two types of general and intensive treatments at the University Hospital in Vaudois, Switzerland. A questionnaire has been elaborated for identifying the variables linked with characteristics of the nurse's work, as well as personal variables of the employer which could have an influence on the level of satisfaction. In identifying the sources of satisfaction and dissatisfaction, it has been possible to propose recommendations and corrective measures in order to improve the level of global satisfaction of the nursing team.
Resumo:
Since integral abutment bridges decrease the initial and maintenance costs of bridges, they provide an attractive alternative for bridge designers. The objective of this project is to develop rational and experimentally verified design recommendations for these bridges. Field testing consisted of instrumenting two bridges in Iowa to monitor air and bridge temperatures, bridge displacements, and pile strains. Core samples were also collected to determine coefficients of thermal expansion for the two bridges. Design values for the coefficient of thermal expansion of concrete are recommended, as well as revised temperature ranges for the deck and girders of steel and concrete bridges. A girder extension model is developed to predict the longitudinal bridge displacements caused by changing bridge temperatures. Abutment rotations and passive soil pressures behind the abutment were neglected. The model is subdivided into segments that have uniform temperatures, coefficients of expansion, and moduli of elasticity. Weak axis pile strains were predicted using a fixed-head model. The pile is idealized as an equivalent cantilever with a length determined by the surrounding soil conditions and pile properties. Both the girder extension model and the fixed-head model are conservative for design purposes. A longitudinal frame model is developed to account for abutment rotations. The frame model better predicts both the longitudinal displacement and weak axis pile strains than do the simpler models. A lateral frame model is presented to predict the lateral motion of skewed bridges and the associated strong axis pile strains. Full passive soil pressure is assumed on the abutment face. Two alternatives for the pile design are presented. Alternative One is the more conservative and includes thermally induced stresses. Alternative Two neglects thermally induced stresses but allows for the partial formation of plastic hinges (inelastic redistribution of forces). Ductility criteria are presented for this alternative. Both alternatives are illustrated in a design example.
Resumo:
This study aimed to assess the psychometric robustness of the French version of the Supportive Care Needs Survey and breast cancer (BC) module (SCNS-SF34-Fr and SCNS-BR8-Fr). Breast cancer patients were recruited in two hospitals (in Paris, France and Lausanne, Switzerland) either in ambulatory chemotherapy or radiotherapy, or surgery services. They were invited to complete the SCNS-SF34-Fr and SCNS-BR8-Fr as well as quality of life and patient satisfaction questionnaires. Three hundred and eighty-four (73% response rate) BC patients returned completed questionnaires. A five-factor model was confirmed for the SCNS-SF34-Fr with adequate goodness-of-fit indexes, although some items evidenced content redundancy, and a one-factor was identified for the SCNS-BR8-Fr. Internal consistency and test-retest estimates were satisfactory for most scales. The SCNS-SF34-Fr and SCNS-BR8-Fr scales demonstrated conceptual differences with the quality of life and satisfaction with care scales, highlighting the specific relevance of this assessment. Different levels of needs could be differentiated between groups of BC patients in terms of age and level of education (P < 0.001). The SCNS-SF34-Fr and SCNS-BR8-Fr present adequate psychometric properties despite some redundant items. These questionnaires allow for the crucial endeavour to design appropriate care services according to BC patients' characteristics.
Resumo:
ABSTRACT: BACKGROUND: Chest wall syndrome (CWS), the main cause of chest pain in primary care practice, is most often an exclusion diagnosis. We developed and evaluated a clinical prediction rule for CWS. METHODS: Data from a multicenter clinical cohort of consecutive primary care patients with chest pain were used (59 general practitioners, 672 patients). A final diagnosis was determined after 12 months of follow-up. We used the literature and bivariate analyses to identify candidate predictors, and multivariate logistic regression was used to develop a clinical prediction rule for CWS. We used data from a German cohort (n = 1212) for external validation. RESULTS: From bivariate analyses, we identified six variables characterizing CWS: thoracic pain (neither retrosternal nor oppressive), stabbing, well localized pain, no history of coronary heart disease, absence of general practitioner's concern, and pain reproducible by palpation. This last variable accounted for 2 points in the clinical prediction rule, the others for 1 point each; the total score ranged from 0 to 7 points. The area under the receiver operating characteristic (ROC) curve was 0.80 (95% confidence interval 0.76-0.83) in the derivation cohort (specificity: 89%; sensitivity: 45%; cut-off set at 6 points). Among all patients presenting CWS (n = 284), 71% (n = 201) had a pain reproducible by palpation and 45% (n = 127) were correctly diagnosed. For a subset (n = 43) of these correctly classified CWS patients, 65 additional investigations (30 electrocardiograms, 16 thoracic radiographies, 10 laboratory tests, eight specialist referrals, one thoracic computed tomography) had been performed to achieve diagnosis. False positives (n = 41) included three patients with stable angina (1.8% of all positives). External validation revealed the ROC curve to be 0.76 (95% confidence interval 0.73-0.79) with a sensitivity of 22% and a specificity of 93%. CONCLUSIONS: This CWS score offers a useful complement to the usual CWS exclusion diagnosing process. Indeed, for the 127 patients presenting CWS and correctly classified by our clinical prediction rule, 65 additional tests and exams could have been avoided. However, the reproduction of chest pain by palpation, the most important characteristic to diagnose CWS, is not pathognomonic.
Resumo:
Epigenetic silencing of the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) by promoter methylation predicts successful alkylating agent therapy, such as with temozolomide, in glioblastoma patients. Stratified therapy assignment of patients in prospective clinical trials according to tumor MGMT status requires a standardized diagnostic test, suitable for high-throughput analysis of small amounts of formalin-fixed, paraffin-embedded tumor tissue. A direct, real-time methylation-specific PCR (MSP) assay was developed to determine methylation status of the MGMT gene promoter. Assay specificity was obtained by selective amplification of methylated DNA sequences of sodium bisulfite-modified DNA. The copy number of the methylated MGMT promoter, normalized to the beta-actin gene, provides a quantitative test result. We analyzed 134 clinical glioma samples, comparing the new test with the previously validated nested gel-based MSP assay, which yields a binary readout. A cut-off value for the MGMT methylation status was suggested by fitting a bimodal normal mixture model to the real-time results, supporting the hypothesis that there are two distinct populations within the test samples. Comparison of the tests showed high concordance of the results (82/91 [90%]; Cohen's kappa = 0.80; 95% confidence interval, 0.82-0.95). The direct, real-time MSP assay was highly reproducible (Pearson correlation 0.996) and showed valid test results for 93% (125/134) of samples compared with 75% (94/125) for the nested, gel-based MSP assay. This high-throughput test provides an important pharmacogenomic tool for individualized management of alkylating agent chemotherapy.