939 resultados para Vacuum-tubes
Resumo:
Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero cosmological constant A) with constant non-zero Weyl eigenvalues are considered. For type Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily has the value 2A/3 and it turns out that the only possible spacetimes are some Kundt-waves considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D. For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution found long ago by Petrov using group theoretic methods. These results can be summarised by the statement that the only vacuum spacetimes with constant Weyl eigenvalues are either homogeneous or are Kundt spacetimes. This result is similar to that of Coley et al. who proved their result for general spacetimes under the assumption that all scalar invariants constructed from the curvature tensor and all its derivatives were constant.
Resumo:
This dissertation consists of two independent musical compositions and an article detailing the process of the design and assembly of an electric guitar with particular emphasis on the carefully curated suite of embedded effects.
The first piece, 'Phase Locked Loop and Modulo Games' is scored for electric guitar and a single echo of equal volume less than a beat away. One could think of the piece as a 15 minute canon at the unison at the dotted eighth note (or at times the quarter or triplet-quarter), however the compositional motivation is more about weaving a composite texture between the guitar and its echo that is, while in theory extremely contrapuntal, in actuality is simply a single [superhuman] melodic line.
The second piece, 'The Dogma Loops' picks up a few compositional threads left by ‘Phase Locked Loop’ and weaves them into an entirely new tapestry. 'Phase Locked Loop' is motivated by the creation of a complex musical composite that is for the most part electronically transparent. 'The Dogma Loops' questions that same notion of composite electronic complexity by essentially asking a question: "what are the inputs to an interactive electronic system that create the most complex outputs via the simplest musical means possible?"
'The Dogma Loops' is scored for Electric Guitar (doubling on Ukulele), Violin and Violoncello. All of the principal instruments require an electronic pickup (except the Uke). The work is in three sections played attacca; [Automation Games], [Point of Origin] and [Cloning Vectors].
The third and final component of the document is the article 'Finding Ibrida.' This article details the process of the design and assembly of an electric guitar with integrated effects, while also providing the deeper context (conceptual and technical) which motivated the efforts and informed the challenges to hybridize the various technologies (tubes, transistors, digital effects and a microcontroller subsystem). The project was motivated by a desire for rigorous technical and hands-on engagement with analog signal processing as applied to the electric guitar. ‘Finding Ibrida’ explores sound, some myths and lore of guitar tech and the history of electric guitar distortion and its culture of sonic exploration.
Finite element modeling of straightening of thin-walled seamless tubes of austenitic stainless steel
Resumo:
During this thesis work a coupled thermo-mechanical finite element model (FEM) was builtto simulate hot rolling in the blooming mill at Sandvik Materials Technology (SMT) inSandviken. The blooming mill is the first in a long line of processes that continuously or ingotcast ingots are subjected to before becoming finished products. The aim of this thesis work was twofold. The first was to create a parameterized finiteelement (FE) model of the blooming mill. The commercial FE software package MSCMarc/Mentat was used to create this model and the programing language Python was used toparameterize it. Second, two different pass schedules (A and B) were studied and comparedusing the model. The two pass series were evaluated with focus on their ability to healcentreline porosity, i.e. to close voids in the centre of the ingot. This evaluation was made by studying the hydrostatic stress (σm), the von Mises stress (σeq)and the plastic strain (εp) in the centre of the ingot. From these parameters the stress triaxiality(Tx) and the hydrostatic integration parameter (Gm) were calculated for each pass in bothseries using two different transportation times (30 and 150 s) from the furnace. The relationbetween Gm and an analytical parameter (Δ) was also studied. This parameter is the ratiobetween the mean height of the ingot and the contact length between the rolls and the ingot,which is useful as a rule of thumb to determine the homogeneity or penetration of strain for aspecific pass. The pass series designed with fewer passes (B), many with greater reduction, was shown toachieve better void closure theoretically. It was also shown that a temperature gradient, whichis the result of a longer holding time between the furnace and the blooming mill leads toimproved void closure.
Resumo:
Moisture desorption observations from two bentonite clay mats subjected to ten environmental zones with individually different combinations of laboratory-controlled constant temperatures (between 20 °C and 40 °C) and relative humidity (between 15% and 70%) are presented. These laboratory observations are compared with predictions from mathematical models, such as thin-layer drying equations and kinetic drying models proposed by Page, Wang and Singh, and Henderson and Pabis. The quality of fit of these models is assessed using standard error (SE) of estimate, relative percent of error, and coefficient of correlation. The Page model was found to better predict the drying kinetics of the bentonite clay mats for the simulated tropical climates. Critical study on the drying constant and moisture diffusion coefficient helps to assess the efficacy of a polymer to retain moisture and control desorption through water molecule bonding. This is further substantiated with the Guggenheim–Anderson–De Boer (GAB) desorption isotherm model which is presented.
Resumo:
Water removal in paper manufacturing is an energy-intensive process. The dewatering process generally consists of four stages of which the first three stages include mechanical water removal through gravity filtration, vacuum dewatering and wet pressing. In the fourth stage, water is removed thermally, which is the most expensive stage in terms of energy use. In order to analyse water removal during a vacuum dewatering process, a numerical model was created by using a Level-Set method. Various different 2D structures of the paper model were created in MATLAB code with randomly positioned circular fibres with identical orientation. The model considers the influence of the forming fabric which supports the paper sheet during the dewatering process, by using volume forces to represent flow resistance in the momentum equation. The models were used to estimate the dry content of the porous structure for various dwell times. The relation between dry content and dwell time was compared to laboratory data for paper sheets with basis weights of 20 and 50 g/m2 exposed to vacuum levels between 20 kPa and 60 kPa. The comparison showed reasonable results for dewatering and air flow rates. The random positioning of the fibres influences the dewatering rate slightly. In order to achieve more accurate comparisons, the random orientation of the fibres needs to be considered, as well as the deformation and displacement of the fibres during the dewatering process.
Resumo:
Type 1 neurofibromatosis is a relatively common inherited disease of the nervous system, with a frequency of almost 1 in 3000. It is associated with neurofibromas of various sites. Our case report is about the surgical management of a giant neurofibroma of the right gluteal fold in a 46-year-old male with NF1. The patient presented with increasing edema and accelerated growth of the mass; he underwent percutaneous embolization of lesion vessels that induced necrosis of the neurofibroma. The patient was taken to the operating room, where surgical resection of the bulk of the lesion was undertaken. The postoperative course was complicated by delayed wound closure managed with antibiotics and vacuum-assisted wound closure. Giant neurofibromas similar to this tumor require complex preoperative, intraoperative and postoperative management strategies. Surgical debulk is best managed with preoperative percutaneous embolization that help to avoid surgical bleeding. Postoperative delayed wound closure was managed with the application of negative pressure in a closed environment that triggers granulation and tissue formation.
Resumo:
Negative-pressure therapy or vacuum-assisted closure (VAC) has been used in clinical applications since the 1940’s and has increased in popularity over the past decade. This dressing technique consists of an open cell foam dressing put into the wound cavity, a vacuum pump produces a negative pressure and an adhesive drape. A controlled sub atmospheric pressure from 75 to 150 mmHg is applied. The vacuum-assisted closure has been applied by many clinicians to chronic wounds in humans; however it cannot be used as a replacement for surgical debridement. The initial treatment for every contaminated wound should be the necrosectomy. The VAC therapy has a complementary function and the range of its indications includes pressure sores, stasis ulcers, chronic wounds such as diabetic foot ulcers, post traumatic and post operative wounds, infected wounds such as necrotizing fasciitis or sternal wounds, soft-tissue injuries, bone exposed injuries, abdominal open wounds and for securing a skin graft. We describe our experience with the VAC dressing used to manage acute and chronic wounds in a series of 135 patients, with excellent results together with satisfaction of the patients.
Resumo:
Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed.
Resumo:
Carne do alguidar is a Portuguese traditional pork fried meat, usually manufactured for self-consumption purposes. This study developed a ready-to-eat (RTE) meat product, to meet today's consumers’ convenience, manufactured at the industrial scale evaluating its quality and shelf-life, assessing the effect of vacuum packaging and the use of an antioxidant (50 ppm BHT) to enhance oxidative stability. Physicochemical and microbiological parameters were assessed and a sensory analysis was performed. Interestingly, no significant differences were recorded between control (non-BHT) and antioxidant (BHT) samples. Microbiological counts remained at low levels throughout the storage period, ensuring the product’s required microbiological quality. At later storage stages, higher values of thiobarbituric acid reactive substances arose and off flavours and aromas were perceived. Still, overall appreciation was not affected until 12 months storage and a significant depreciation was perceived only after 15 months. Fibrousness and rising of off flavours were negatively correlated with overall appreciation.
Resumo:
Using a model derived from lubrication theory, we consider the evolution of a thin viscous film coating the interior or exterior of a cylindrical tube. The flow is driven by surface tension and gravity and the liquid is assumed to wet the cylinder perfectly. When the tube is horizontal, we use large-time simulations to describe the bifurcation structure of the capillary equilibria appearing at low Bond number. We identify a new film configuration in which an isolated dry patch appears at the top of the tube and demonstrate hysteresis in the transition between rivulets and annular collars as the tube length is varied. For a tube tilted to the vertical, we show how a long initially uniform rivulet can break up first into isolated drops and then annular collars, which subsequently merge. We also show that the speed at which a localized drop moves down the base of a tilted tube is non-monotonic in tilt angle.
Resumo:
Internally-grooved refrigeration tubes maximize tube-side evaporative heat transfer rates and have been identified as a most promising technology for integration into compact cold plates. Unfortunately, the absence of phenomenological insights and physical models hinders the extrapolation of grooved-tube performance to new applications. The success of regime-based heat transfer correlations for smooth tubes has motivated the current effort to explore the relationship between flow regimes and enhanced heat transfer in internally-grooved tubes. In this thesis, a detailed analysis of smooth and internally-grooved tube data reveals that performance improvement in internally-grooved tubes at low-to-intermediate mass flux is a result of early flow regime transition. Based on this analysis, a new flow regime map and corresponding heat transfer coefficient correlation, which account for the increased wetted angle, turbulence, and Gregorig effects unique to internally-grooved tubes, were developed. A two-phase test facility was designed and fabricated to validate the newly-developed flow regime map and regime-based heat transfer coefficient correlation. As part of this setup, a non-intrusive optical technique was developed to study the dynamic nature of two-phase flows. It was found that different flow regimes result in unique temporally varying film thickness profiles. Using these profiles, quantitative flow regime identification measures were developed, including the ability to explain and quantify the more subtle transitions that exist between dominant flow regimes. Flow regime data, based on the newly-developed method, and heat transfer coefficient data, using infrared thermography, were collected for two-phase HFE-7100 flow in horizontal 2.62mm - 8.84mm diameter smooth and internally-grooved tubes with mass fluxes from 25-300 kg/m²s, heat fluxes from 4-56 kW/m², and vapor qualities approaching 1. In total, over 6500 combined data points for the adiabatic and diabatic smooth and internally-grooved tubes were acquired. Based on results from the experiments and a reinterpretation of data from independent researchers, it was established that heat transfer enhancement in internally-grooved tubes at low-to-intermediate mass flux is primarily due to early flow regime transition to Annular flow. The regime-based heat transfer coefficient outperformed empirical correlations from the literature, with mean and absolute deviations of 4.0% and 32% for the full range of data collected.
Resumo:
This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA’s Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within +/- 3 Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2-2.5 Celsius lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft in 2017-2018 is also presented.
Resumo:
The accuracy in determining the quantum state of a system depends on the type of measurement performed. Homodyne and heterodyne detection are the two main schemes in continuous-variable quantum information. The former leads to a direct reconstruction of the Wigner function of the state, whereas the latter samples its Husimi Q function. We experimentally demonstrate that heterodyne detection outperforms homodyne detection for almost all Gaussian states, the details of which depend on the squeezing strength and thermal noise.