961 resultados para Vacuum Microelectronics
Resumo:
The electrical and optical characteristics of a cylindrical alumina insulator (94% Al203) have been measured under ultra-high vacuum (P < 10-8 mBar) conditions. A high-resolution CCD camera was used to make real-time optical recordings of DC prebreakdown luminescence from the ceramic, under conditions where DC current magnitudes were limited to less than 50μA. Two concentric metallized rings formed a pair of co-axial electrodes, on the end-face of the alumina tube; a third 'transparent' electrode was employed to study the effect of an orthogonal electric field upon the radial conduction processes within the metallized alumina specimen. The wavelength-spectra of the emitted light was quantified using a high-speed scanning monochromator and photo-multiplier tube detector. Concurrent electrical measurements were made alongside the recording of optical-emission images. An observed time-dependence of the photon-emission is correlated with a time-variation observed in the DC current-voltage characteristics of the alumina. Optical images were also recorded of pulsed-field surface-flashover events on the alumina ceramic. An intensified high-speed video technique provided 1ms frames of surface-flashover events, whilst 100ns frames were achieved using an ultra high-speed fast-framing camera. By coupling this fast-frame camera to a digital storage oscilloscope, it was possible to establish a temporal correlation between the application of a voltage-pulse to the ceramic and the evolution of photonic emissions from the subsequent surface-flashover event. The electro-optical DC prebreakdown characteristics of the alumina are discussed in terms of solid-state photon-emission processes, that are believed to arise from radiative electron-recombination at vacancy-defects and substitutional impurity centres within the surface-layers of the ceramic. The physical nature of vacancy-defects within an alumina dielectric is extensively explored, with a particular focus placed upon the trapped electron energy-levels that may be present at these defect centres. Finally, consideration is given to the practical application of alumina in the trigger-ceramic of a sealed triggered vacuum gap (TVG) switch. For this purpose, a physical model describing the initiation of electrical breakdown within the TVG regime is proposed, and is based upon the explosive destabilisation of trapped charge within the alumina ceramic, triggering the onset of surface-flashover along the insulator. In the main-gap prebreakdown phase, it is suggested that the electrical-breakdown of the TVG is initiated by the low-field 'stripping' of prebreakdown electrons from vacancy-defects in the ceramic under the influence of an orthogonal main-gap electric field.
Resumo:
An ultra high vacuum system capable of attaining pressures of 10-12 mm Hg was used for thermal desorption experiments. The metal chosen for these experiments was tantalum because of its suitability for thermal desorption experiments and because relatively little work has been done using this metal. The gases investigated were carbon monoxide, hydrogen and ethylene. The kinetic and thermodynamic parameters relating to the desorption reaction were calculated and the values obtained related to the reaction on the surface. The thermal desorption reaction was not capable of supplying all the information necessary to form a complete picture of the desorption reaction. Further information was obtained by using a quadrupole mass spectrometer to analyse the desorbed species. The identification of the desorbed species combined with the value of the desorption parameters meant that possible adatom structures could be postulated. A combination of these two techniques proved to be a very powerful tool when investigating gas-metal surface reactions and gave realistic values for the measured parameters such as the surface coverage, order of reaction, the activation energy and pre-exponential function for desorption. Electron microscopy and X-ray diffraction were also used to investigate the effect of the gases on the metal surface.
Resumo:
Doubt is cast on the much quoted results of Yakupov that the torsion vector in embedding class two vacuum space-times is necessarily a gradient vector and that class 2 vacua of Petrov type III do not exist. The rst result is equivalent to the fact that the two second fundamental forms associated with the embedding necessarily commute and has been assumed in most later investigations of class 2 vacuum space-times. Yakupov stated the result without proof, but hinted that it followed purely algebraically from his identity: Rijkl Ckl = 0 where Cij is the commutator of the two second fundamental forms of the embedding.From Yakupov's identity, it is shown that the only class two vacua with non-zero commutator Cij must necessarily be of Petrov type III or N. Several examples are presented of non-commuting second fundamental forms that satisfy Yakupovs identity and the vacuum condition following from the Gauss equation; both Petrov type N and type III examples occur. Thus it appears unlikely that his results could follow purely algebraically. The results obtained so far do not constitute denite counter-examples to Yakupov's results as the non-commuting examples could turn out to be incompatible with the Codazzi and Ricci embedding equations. This question is currently being investigated.
Resumo:
Fatigue crack growth rate tests have been performed on Nimonic AP1, a powder formed Ni-base superalloy, in air and vacuum at room temperature. These show that threshold values are higher, and near-threshold (faceted) crack growth rates are lower, in vacuum than in air, although at high growth rates, in the “structure-insensitive” regime, R-ratio and a dilute environment have little effect. Changing the R-ratio from 0.1 to 0.5 in vacuum does not alter near-threshold crack growth rates very much, despite more extensive secondary cracking being noticeable at R= 0.5. In vacuum, rewelding occurs at contact points across the crack as ΔK falls. This leads to the production of extensive fracture surface damage and bulky fretting debris, and is thought to be a significant contributory factor to the observed increase in threshold values.
Resumo:
AMS Subj. Classification: 83C15, 83C35
Resumo:
The performance of vacuum, slow and fast pyrolysis processes to transfer energy from the paper waste sludge (PWS) to liquid and solid products was compared. Paper waste sludges with low and high ash content (8.5 and 46.7 wt.%) were converted under optimised conditions for temperature and pellet size to maximise both product yields and energy content. Comparison of the gross energy conversions, as a combination of the bio-oil/tarry phase and char (ECsum), revealed that the fast pyrolysis performance was between 18.5% and 20.1% higher for the low ash PWS, and 18.4% and 36.5% higher for high ash PWS, when compared to the slow and vacuum pyrolysis processes respectively. For both PWSs, this finding was mainly attributed to higher production of condensable organic compounds and lower water yields during FP. The low ash PWS chars, fast pyrolysis bio-oils and vacuum pyrolysis tarry phase products had high calorific values (∼18-23 MJ kg-1) making them promising for energy applications. Considering the low calorific values of the chars from alternative pyrolysis processes (∼4-7 MJ kg-1), the high ash PWS should rather be converted to fast pyrolysis bio-oil to maximise the recovery of usable energy products.
Resumo:
One of the many promising applications of metal/ceramic joining is in biomedical implantable devices. This work is focused on vacuum brazing of C.P titanium to 96% alumina ceramic using pure gold as the filler metal. A novel method of brazing is developed where resistance heating of C.P titanium is done inside a thermal evaporator using a Ta heating electrode. The design of electrode is optimized using Ansys resistive heating simulations. The materials chosen in this study are biocompatible and have prior history in implantable devices approved by FDA. This research is part of Boston Retinal implant project to make a biocompatible implantable device (www.bostonretina.org). ^ Pure gold braze has been used in the construction of single terminal feedthrough in low density hermetic packages utilizing a single platinum pin brazed to an alumina or sapphire ceramic donut (brazed to a titanium case or ferrule for many years in implantable pacemakers. Pure gold (99.99%) brazing of 96% alumina ceramic with CP titanium has been performed and evaluated in this dissertation. Brazing has been done by using electrical resistance heating. The 96% alumina ceramic disk was manufactured by high temperature cofired ceramic (HTCC) processing while the Ti ferrule and gold performs were purchased from outside. Hermetic joints having leak rate of the order of 1.6 × 10-8 atm-cc/ sec on a helium leak detector were measured. ^ Alumina ceramics made by HTCC processing were centreless grounded utilizing 800 grit diamond wheel to provide a smooth surface for sputtering of a thin film of Nb. Since pure alumina demonstrates no adhesion or wetting to gold, an adhesion layer must be used on the alumina surface. Niobium (Nb), Tantalum (Ta) and Tungsten (W) were chosen for evaluation since all are refractory (less dissolution into molten gold), all form stable oxides (necessary for adhesion to alumina) and all are readily thin film deposited as metals. Wetting studies are also performed to determine the wetting angle of pure gold to Ti, Ta, Nb and W substrates. Nano tribological scratch testing of thin film of Nb (which demonstrated the best wetting properties towards gold) on polished 96% alumina ceramic is performed to determine the adhesion strength of thin film to the substrate. The wetting studies also determined the thickness of the intermetallic compounds layers formed between Ti and gold, reaction microstructure and the dissolution of the metal into the molten gold.^
Resumo:
The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.
Resumo:
Thermal analysis of electronic devices is one of the most important steps for designing of modern devices. Precise thermal analysis is essential for designing an effective thermal management system of modern electronic devices such as batteries, LEDs, microelectronics, ICs, circuit boards, semiconductors and heat spreaders. For having a precise thermal analysis, the temperature profile and thermal spreading resistance of the device should be calculated by considering the geometry, property and boundary conditions. Thermal spreading resistance occurs when heat enters through a portion of a surface and flows by conduction. It is the primary source of thermal resistance when heat flows from a tiny heat source to a thin and wide heat spreader. In this thesis, analytical models for modeling the temperature behavior and thermal resistance in some common geometries of microelectronic devices such as heat channels and heat tubes are investigated. Different boundary conditions for the system are considered. Along the source plane, a combination of discretely specified heat flux, specified temperatures and adiabatic condition are studied. Along the walls of the system, adiabatic or convective cooling boundary conditions are assumed. Along the sink plane, convective cooling with constant or variable heat transfer coefficient are considered. Also, the effect of orthotropic properties is discussed. This thesis contains nine chapters. Chapter one is the introduction and shows the concepts of thermal spreading resistance besides the originality and importance of the work. Chapter two reviews the literatures on the thermal spreading resistance in the past fifty years with a focus on the recent advances. In chapters three and four, thermal resistance of a twodimensional flux channel with non-uniform convection coefficient in the heat sink plane is studied. The non-uniform convection is modeled by using two functions than can simulate a wide variety of different heat sink configurations. In chapter five, a non-symmetrical flux channel with different heat transfer coefficient along the right and left edges and sink plane is analytically modeled. Due to the edge cooling and non-symmetry, the eigenvalues of the system are defined using the heat transfer coefficient on both edges and for satisfying the orthogonality condition, a normalized function is calculated. In chapter six, thermal behavior of two-dimensional rectangular flux channel with arbitrary boundary conditions on the source plane is presented. The boundary condition along the source plane can be a combination of the first kind boundary condition (Dirichlet or prescribed temperature) and the second kind boundary condition (Neumann or prescribed heat flux). The proposed solution can be used for modeling the flux channels with numerous different source plane boundary conditions without any limitations in the number and position of heat sources. In chapter seven, temperature profile of a circular flux tube with discretely specified boundary conditions along the source plane is presented. Also, the effect of orthotropic properties are discussed. In chapter 8, a three-dimensional rectangular flux channel with a non-uniform heat convection along the heat sink plane is analytically modeled. In chapter nine, a summary of the achievements is presented and some systems are proposed for the future studies. It is worth mentioning that all the models and case studies in the thesis are compared with the Finite Element Method (FEM).
Resumo:
Einstein spacetimes (that is vacuum spacetimes possibly with a non-zero cosmological constant A) with constant non-zero Weyl eigenvalues are considered. For type Petrov II & D this assumption allows one to prove that the non-repeated eigenvalue necessarily has the value 2A/3 and it turns out that the only possible spacetimes are some Kundt-waves considered by Lewandowski which are type II and a Robinson-Bertotti solution of type D. For Petrov type I the only solution turns out to be a homogeneous pure vacuum solution found long ago by Petrov using group theoretic methods. These results can be summarised by the statement that the only vacuum spacetimes with constant Weyl eigenvalues are either homogeneous or are Kundt spacetimes. This result is similar to that of Coley et al. who proved their result for general spacetimes under the assumption that all scalar invariants constructed from the curvature tensor and all its derivatives were constant.
Resumo:
This work looks at the effect on mid-gap interface state defect density estimates for In0.53Ga0.47As semiconductor capacitors when different AC voltage amplitudes are selected for a fixed voltage bias step size (100 mV) during room temperature only electrical characterization. Results are presented for Au/Ni/Al2O3/In0.53Ga0.47As/InP metal–oxide–semiconductor capacitors with (1) n-type and p-type semiconductors, (2) different Al2O3 thicknesses, (3) different In0.53Ga0.47As surface passivation concentrations of ammonium sulphide, and (4) different transfer times to the atomic layer deposition chamber after passivation treatment on the semiconductor surface—thereby demonstrating a cross-section of device characteristics. The authors set out to determine the importance of the AC voltage amplitude selection on the interface state defect density extractions and whether this selection has a combined effect with the oxide capacitance. These capacitors are prototypical of the type of gate oxide material stacks that could form equivalent metal–oxide–semiconductor field-effect transistors beyond the 32 nm technology node. The authors do not attempt to achieve the best scaled equivalent oxide thickness in this work, as our focus is on accurately extracting device properties that will allow the investigation and reduction of interface state defect densities at the high-k/III–V semiconductor interface. The operating voltage for future devices will be reduced, potentially leading to an associated reduction in the AC voltage amplitude, which will force a decrease in the signal-to-noise ratio of electrical responses and could therefore result in less accurate impedance measurements. A concern thus arises regarding the accuracy of the electrical property extractions using such impedance measurements for future devices, particularly in relation to the mid-gap interface state defect density estimated from the conductance method and from the combined high–low frequency capacitance–voltage method. The authors apply a fixed voltage step of 100 mV for all voltage sweep measurements at each AC frequency. Each of these measurements is repeated 15 times for the equidistant AC voltage amplitudes between 10 mV and 150 mV. This provides the desired AC voltage amplitude to step size ratios from 1:10 to 3:2. Our results indicate that, although the selection of the oxide capacitance is important both to the success and accuracy of the extraction method, the mid-gap interface state defect density extractions are not overly sensitive to the AC voltage amplitude employed regardless of what oxide capacitance is used in the extractions, particularly in the range from 50% below the voltage sweep step size to 50% above it. Therefore, the use of larger AC voltage amplitudes in this range to achieve a better signal-to-noise ratio during impedance measurements for future low operating voltage devices will not distort the extracted interface state defect density.
Resumo:
The authors report a chemical process to remove the native oxide on Ge and Bi2Se3 crystals, thus facilitating high-resolution electron beam lithography (EBL) on their surfaces using a hydrogen silsesquioxane (HSQ) resist. HSQ offers the highest resolution of all the commercially available EBL resists. However, aqueous HSQ developers such as NaOH and tetramethylammonium hydroxide have thus far prevented the fabrication of high-resolution structures via the direct application of HSQ to Ge and Bi2Se3, due to the solubility of components of their respective native oxides in these strong aqueous bases. Here we provide a route to the generation of ordered, high-resolution, high-density Ge and Bi2Se3 nanostructures with potential applications in microelectronics, thermoelectric, and photonics devices.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-07