976 resultados para VOLUMETRIC OXYGEN TRANSFER COEFFICIENT


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A commercially available dense carbon monolith (CM) and four carbon monoliths obtained from it have been studied as electrochemical capacitor electrodes in a two-electrode cell. CM has: (i) very high density (1.17 g cm−3), (ii) high electrical conductivity (9.3 S cm−1), (iii) well-compacted and interconnected carbon spheres, (iv) homogeneous microporous structure and (v) apparent BET surface area of 957 m2g−1. It presents interesting electrochemical behaviors (e.g., excellent gravimetric capacitance and outstanding volumetric capacitance). The textural characteristics of CM (porosity and surface chemistry) have been modified by means of different treatments. The electrochemical performances of the starting and treated monoliths have been analyzed as a function of their porous textures and surface chemistry, both on gravimetric and volumetric basis. The monoliths present high specific and volumetric capacitances (292 F g−1 and 342 F cm−3), high energy densities (38 Wh kg−1 and 44 Wh L−1), and high power densities (176 W kg−1 and 183 W L−1). The specific and volumetric capacitances, especially the volumetric capacitance, are the highest ever reported for carbon monoliths. The high values are achieved due to a suitable combination of density, electrical conductivity, porosity and oxygen surface content.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The bioelectrocatalytic (oxygen reduction reaction, ORR) properties of the multicopper oxidase CueO immobilized on gold electrodes were investigated. Macroscopic electrochemical techniques were combined with in situ scanning tunneling microscopy (STM) and surface-enhanced Raman spectroscopy at the ensemble and at the single-molecule level. Self-assembled monolayer of mercaptopropionic acid, cysteamine, and p-aminothiophenol were chosen as redox mediators. The highest ORR activity was observed for the protein attached to amino-terminated adlayers. In situ STM experiments revealed that the presence of oxygen causes distinct structure and electronic changes in the metallic centers of the enzyme, which determine the rate of intramolecular electron transfer and, consequently, affect the rate of electron tunneling through the protein. Complementary Raman spectroscopy experiments provided access for monitoring structural changes in the redox state of the type 1 copper center of the immobilized enzyme during the CueO-catalyzed oxygen reduction cycle. These results unequivocally demonstrate the existence of a direct electronic communication between the electrode substrate and the type 1 copper center.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution oxygen and carbon isotope stratigraphy is presented for Miocene to early Pliocene sequences at three DSDP sites from the Lord Howe Rise, southwest Pacific, at water depths ranging from 1,300 to 2,000 m. Site 588 is located in the warm subtropics (~26°S), whereas Sites 590 and 591 are positioned in transitional (northern temperate) water masses (~31°S). Benthic foraminiferal oxygen and carbon isotope analyses were conducted on all sites; planktonic foraminiferal isotope data were generated for Site 590 only. Sample resolution in these sequences is on the order of 50,000 yr. or better. The chronological framework employed in this study is based largely upon ages assigned to Neogene calcareous nannoplankton boundaries. The benthic oxygen isotope record exhibits several major features during the Neogene. During most of the early Miocene, delta18O values were relatively low, reaching minimum values in the late early Miocene (19.5 to 16.5 Ma), and recording the climax of Neogene warmth. This was followed by a major increase in benthic delta18O values between ~16.5 and 13.5 Ma, which is interpreted as representing major, permanent accumulation of the East Antarctic ice sheet and cooling of bottom waters. During the 3 m.y. 18O enrichment, surface waters at these middle latitudes warmed between 16 and 14.5 Ma. During the remainder of the middle and late Miocene, benthic delta18O values exhibit distinct fluctuations, but the average value remained unchanged. The isotopic data show two distinct episodes of climatic cooling close to the middle/late Miocene boundary. The earliest of these events occurred between 12.5 and 11.5 Ma in the latest middle Miocene. The second cooling event occurred from 11 to 9 Ma, and is marked by some of the highest delta18O values of the entire Miocene. This was followed by relative warmth during the middle part of the late Miocene. The latest Miocene and earliest Pliocene (6.2 to 4.5 Ma) were marked by relatively high delta18O values, indicating increased cooling and glaciation. During the middle Pliocene, at about 3.4 Ma, a 0.4 per mil increase in benthic delta18O documents a net increase in average global ice volume and cooling of bottom waters. During this interval of increased glaciation, surface waters warmed by 2-3°C in southern middle-latitude regions. During the late Pliocene, between 2.6 and 2.4 Ma, a further increase in delta18O occurred; this has been interpreted by previous workers as heralding the onset of Northern Hemisphere glaciation. Surface-water warming in the middle latitudes occurred in association with major high-latitude glacial increases in the early middle Miocene (16-14 Ma), middle Pliocene (-3.5 Ma), and late Pliocene (~2.4 Ma). These intervals were also marked by increases in the vertical temperature gradient in the open ocean. Intersite correlation is enhanced by using carbon isotope stratigraphy. The great similarity of the delta13C time-series records within and between ocean basins and with water depth clearly indicates that changes in oceanwide average delta13C of [HCO3]- in seawater dominated the records, rather than local effects. Broad changes in the Neogene delta13C record were caused largely by transfer of organic carbon between continental and oceanic reservoirs. These transfers were caused by marine transgressions and regressions on the continental margins. The dominant feature of Neogene delta13C stratigraphy is a broad late early to early middle Miocene increase of about lâ between ~19 and 14.5 Ma. This trend occurred contemporaneously with a period of maximum coastal onlap (transgression) and maximum Neogene climatic warmth. The delta13C trend terminated during the expansion of the Antarctic ice sheet and associated marine regression. The latest Miocene carbon isotope shift (of up to - 0.75 per mil) at 6.2 Ma is clearly recorded in all sites examined and was followed by relatively low values during the remainder of the Neogene. This shift was caused by a glacioeustatic sealevel lowering that exposed continental margins via regression and ultimately increased the flux of organic carbon to the deep sea. An increase in delta13C values during the early Pliocene (~5 to 4 Ma) resulted from marine transgression during a time of global warmth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The RAFT-CLD-T methodology is demonstrated to be not only applicable to 1-substituted monomers such as styrene and acrylates, but also to 1,1-disubstituted monomers such as MMA. The chain length of the terminating macromolecules is controlled by CPDB in MMA bulk free radical polymerization at 80 degrees C. The evolution of the chain length dependent termination rate coefficient, k(t)(i,i), was constructed in a step-wise fashion, since the MMA/CPDB system displays hybrid behavior (between conventional and living free radical polymerization) resulting in initial high molecular weight polymers formed at low RAFT agent concentrations. The obtained CLD of k(t) in MMA polymerizations is compatible with the composite model for chain length dependent termination. For the initial chain-length regime, up to a degree of polymerization of 100, k(t) decreases with alpha (in the expression k(t)(i,i) = k(t)(0) . i(-alpha)) being close to 0.65 at 80 degrees C. At chain lengths exceeding 100, the decrease is less pronounced (affording an alpha of 0.15 at 80 degrees C). However, the data are best represented by a continuously decreasing nonlinear functionality implying a chain length dependent alpha.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microbial community composition and activity was investigated in aggregates from a lab-scale bioreactor, in which nitrification, denitrification and phosphorus removal occurred simultaneously. The biomass was highly enriched for polyphosphate accumulating organisms facilitating complete removal of phosphorus from the bulk liquid; however, some inorganic nitrogen still remained at the end of the reactor cycle. This was ascribed to incomplete coupling of nitrification and denitrification causing NO3- accumulation. After 2 h of aeration, denitrification was dependent on the activity of nitrifying bacteria facilitating the formation of anoxic zones in the aggregates; hence, denitrification could not occur without simultaneous nitrification towards the end of the reactor cycle. Nitrous oxide was identified as a product of denitrification, when based on stored PHA as carbon source. This observation is of critical importance to the outlook of applying PHA-driven denitrification in activated sludge processes. (c) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adsorbate molecules scattered in the repulsive field of a surface feature in the form of a semi-cylindrical stripe may be considered as a simple model for a nano-patterned surface. The extent of scattering was conveniently expressed as the tangential momentum accommodation coefficient. An analytical result was obtained using a simple local specular reflection hypothesis in contrast to the more complicated situation of an array of atoms discussed elsewhere, in which screening and secondary reflection may occur (Nicholson and Bhatia 2005). It was also demonstrated that a simple 2D representation leads to the same result for the tangential momentum accommodation coefficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen consumption rates (OCR), aerobic mineralization and sulfate reduction rates (SRR) were studied in the permeable carbonate reef sediments of Heron Reef, Australia. We selected 4 stations with different hydrodynamic regimes for this study. In situ oxygen penetration into the sediments was measured with an autonomous microsensor profiler. Areal OCR were quantified from the measured oxygen penetration depth and volumetric OCR. Oxygen penetration and dynamics (median penetration depths at the 4 stations ranged between 0.3 and 2.2 cm), OCR (median 57 to 196 mmol C m(-2) d(-1)), aerobic mineralization (median 24 to 176 mmol C m(-2) d(-1)) and SRR (median 9 to 42 mmol C m(-2) d(-1)) were highly variable between sites. The supply of oxygen by pore water advection was a major cause for high mineralization rates by stimulating aerobic mineralization at all sites. However, estimated bottom water filtration rates could not explain the differences in volumetric OCR and SRR between the 4 stations. This suggests that local mineralization rates are additionally controlled by factors other than current driven pore water advection, e.g. by the distribution of the benthic fauna or by local differences in labile organic carbon supply from sources such as benthic photosynthesis. Carbon mineralization rates were among the highest reported for coral reef sediments, stressing the role of these sediments in the functioning of the reef ecosystem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work described in this thesis is concerned with mechanisms of contact lens lubrication. There are three major driving forces in contact lens design and development; cost, convenience, and comfort. Lubrication, as reflected in the coefficient of friction, is becoming recognised as one of the major factors affecting the comfort of the current generation of contact lenses, which have benefited from several decades of design and production improvements. This work started with the study of the in-eye release of soluble macromolecules from a contact lens matrix. The vehicle for the study was the family of CIBA Vision Focus® DAILIES® daily disposable contact lenses which is based on polyvinyl alcohol (PVA). The effective release of linear soluble PVA from DAILIES on the surface of the lens was shown to be beneficial in terms of patient comfort. There was a need to develop a novel characterisation technique in order to study these effects at surfaces; this led to the study of a novel tribological technique, which allowed the friction coefficients of different types of contact lenses to be measured reproducibly at genuinely low values. The tribometer needed the ability to accommodate the following features: (a) an approximation to eye lid load, (b) both new and ex-vivo lenses, (c) variations in substrate, (d) different ocular lubricants (including tears). The tribometer and measuring technique developed in this way was used to examine the surface friction and lubrication mechanisms of two different types of contact lenses: daily disposables and silicone hydrogels. The results from the tribometer in terms of both mean friction coefficient and the friction profiles obtained allowed various mechanisms used for surface enhancement now seen in the daily disposable contact lens sector to be evaluated. The three major methods used are: release of soluble macromolecules (such as PVA) from the lens matrix, irreversible surface binding of a macromolecule (such as polyvinyl pyrrolidone) by charge transfer and the simple polymer adsorption (e.g. Pluoronic) at the lens surface. The tribological technique was also used to examine the trends in the development of silicone hydrogel contact lenses. The focus of the principles in the design of silicone hydrogels has now shifted from oxygen permeability, to the improvement of surface properties. Presently, tribological studies reflect the most effective in vitro method of surface evaluation in relation to the in-eye comfort.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A specially-designed vertical wind tunnel was used to freely suspend individual liquid drops of 5 mm initial diameter to investigate drop dynamics, terminal velocity and heat and mass transfer rates. Droplets of distilled, de-ionised water, n-propanol, iso-butanol, monoethanolamine and heptane were studied over a temperature range of 50oC to 82oC. The effects of substances that may provide drop surface rigidity (e.g. surface active agents, binders and polymers) on mass transfer rates were investigated by doping distilled de-ionised water drops with sodium di-octyl sulfo-succinate surfactant. Mass transfer rates decreased with reduced drop oscillation as a result of surfactant addition, confirming the importance of droplet surface instability. Rigid naphthalene spheres and drops which formed a skin were also studied; the results confirmed the reduced transfer rates in the absence of drop fluidity. Following consideration of fundamental drop dynamics in air and experimental results from this study, a novel dimensionless group, the Oteng-Attakora, (OT), number was included in the mass transfer equation to account for droplet surface behaviour and for prediction of heat and mass transfer rates from single drops which exhibit surface instability at Re>=500. The OT number and the modified mass transfer equation are respectively: OT=(ava2/d).de1.5(d/) Sh = 2 + 0.02OT0.15Re0.88Sc0.33 Under all conditions drop terminal velocity increased linearly with the square root of drop diameter and the drag coefficient was 1. The data were correlated with a modified equation by Finlay as follows: CD=0.237.((Re/P0.13)1.55(1/We.P0.13) The relevance of the new model to practical evaporative spray processes is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crotonaldehyde (2-butenal) adsorption over gold sub-nanometer particles, and the influence of co-adsorbed oxygen, has been systematically investigated by computational methods. Using density functional theory, the adsorption energetics of crotonaldehyde on bare and oxidised gold clusters (Au , d = 0.8 nm) were determined as a function of oxygen coverage and coordination geometry. At low oxygen coverage, sites are available for which crotonaldehyde adsorption is enhanced relative to bare Au clusters by 10 kJ mol. At higher oxygen coverage, crotonaldehyde is forced to adsorb in close proximity to oxygen weakening adsorption by up to 60 kJ mol relative to bare Au. Bonding geometries, density of states plots and Bader analysis, are used to elucidate crotonaldehyde bonding to gold nanoparticles in terms of partial electron transfer from Au to crotonaldehyde, and note that donation to gold from crotonaldehyde also becomes significant following metal oxidation. At high oxygen coverage we find that all molecular adsorption sites have a neighbouring, destabilising, oxygen adatom so that despite enhanced donation, crotonaldehyde adsorption is always weakened by steric interactions. For a larger cluster (Au, d = 1.1 nm) crotonaldehyde adsorption is destabilized in this way even at a low oxygen coverage. These findings provide a quantitative framework to underpin the experimentally observed influence of oxygen on the selective oxidation of crotyl alcohol to crotonaldehyde over gold and gold-palladium alloys. © 2014 the Partner Organisations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the paper the identification of the time-dependent blood perfusion coefficient is formulated as an inverse problem. The bio-heat conduction problem is transformed into the classical heat conduction problem. Then the transformed inverse problem is solved using the method of fundamental solutions together with the Tikhonov regularization. Some numerical results are presented in order to demonstrate the accuracy and the stability of the proposed meshless numerical algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Isotope chronostratigraphy of Upper Quaternary sediments from the Northwest Pacific and the Bering Sea was established by oxygen isotope records in planktonic and benthic foraminifera. The main regularities of temporal variations of calcium carbonate, organic carbon and opal contents, as well as of magnetic susceptibility in sediments of the study region with regard to climatic variations and productivity were established by means of isotopic-geochemical and lithophysical analyses of bottom sediments. Correlation of volcanogenic interbeds in the sediments was carried out, and their stratigraphy and age were preliminarily ascertained. Correlation was accomplished of A.P. Jouse diatom horizons determined by an analysis of the main ecological variations in diatom assemblages in Upper Quaternary sediments of the Northwest Pacific, Bering and Okhotsk Seas, and their comparison with similar variations in sediment cores with standard oxygen isotope stages. Also variations in lithology and contents of biogenic components in sediments of the region and in the cores were taken into account. A ratio of abundance of "neritic" species to the sum of "neritic" and oceanic species abundance (coefficient Id) can be a criterion of ecological changes of diatom assemblages in the studied region. It is determined by climate variability and mostly by sea ice influence. Schemes of average sedimentation rates in the Northwest Pacific and Bering Sea for periods of the first and the second oxygen isotope stages (12.5-1 and 24-12.5 ka, respectively) were plotted on the basis of obtained results and correlation of diatom horizons and lithological units in early studied cores with the oxygen isotope stages. Closure of the Bering Strait and aeration of the north-eastern shelf of the Bering Sea during the second stage induced increase of sedimentation rates in the Bering Sea, as compared with the first stage, and suspended material transport from the Bering Sea through the Kamchatka Strait into the Northwest Pacific and its accumulation in the southeast direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The critical role played by copepods in ocean ecology and biogeochemistry warrants an understanding of how these animals may respond to ocean acidification (OA). Whilst an appreciation of the potential direct effects of OA, due to elevated pCO2, on copepods is improving, little is known about the indirect impacts acting via bottom-up(food quality) effects. We assessed, for the first time, the chronic effects of direct and/or indirect exposures to elevated pCO2 on the behaviour, vital rates, chemical and biochemical stoichiometry of the calanoid copepod Acartia tonsa. Bottom-up effects of elevated pCO2 caused species-specific biochemical changes to the phytoplanktonic feed, which adversely affected copepod population structure and decreased recruitment by 30 %. The direct impact of elevated pCO2 caused gender-specific respiratory responses in A.tonsa adults, stimulating an enhanced respiration rate in males (> 2-fold), and a suppressed respiratory response in females when coupled with indirect elevated pCO2 exposures. Under the combined indirect+direct exposure, carbon trophic transfer efficiency from phytoplankton-to-zooplankton declined to < 50 % of control populations, with a commensurate decrease in recruitment. For the first time an explicit role was demonstrated for biochemical stoichiometry in shaping copepod trophic dynamics. The altered biochemical composition of the CO2-exposed prey affected the biochemical stoichiometry of the copepods, which could have ramifications for production of higher tropic levels, notably fisheries. Our work indicates that the control of phytoplankton and the support of higher trophic levels involving copepods have clear potential to be adversely affected under future OA scenarios.