813 resultados para VISUAL INSPECTION METHODS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a portable recording system and methods for obtaining chronic recordings of single units and tracking rhesus monkey behavior in an open field. The integrated system consists of four major components: (1) microelectrode assembly; (2) h

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The safety of post-earthquake structures is evaluated manually through inspecting the visible damage inflicted on structural elements. This process is time-consuming and costly. In order to automate this type of assessment, several crack detection methods have been created. However, they focus on locating crack points. The next step, retrieving useful properties (e.g. crack width, length, and orientation) from the crack points, has not yet been adequately investigated. This paper presents a novel method of retrieving crack properties. In the method, crack points are first located through state-of-the-art crack detection techniques. Then, the skeleton configurations of the points are identified using image thinning. The configurations are integrated into the distance field of crack points calculated through a distance transform. This way, crack width, length, and orientation can be automatically retrieved. The method was implemented using Microsoft Visual Studio and its effectiveness was tested on real crack images collected from Haiti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The commercial far-range (>10 m) spatial data collection methods for acquiring infrastructure’s geometric data are not completely automated because of the necessary manual pre- and/or post-processing work. The required amount of human intervention and, in some cases, the high equipment costs associated with these methods impede their adoption by the majority of infrastructure mapping activities. This paper presents an automated stereo vision-based method, as an alternative and inexpensive solution, to producing a sparse Euclidean 3D point cloud of an infrastructure scene utilizing two video streams captured by a set of two calibrated cameras. In this process SURF features are automatically detected and matched between each pair of stereo video frames. 3D coordinates of the matched feature points are then calculated via triangulation. The detected SURF features in two successive video frames are automatically matched and the RANSAC algorithm is used to discard mismatches. The quaternion motion estimation method is then used along with bundle adjustment optimization to register successive point clouds. The method was tested on a database of infrastructure stereo video streams. The validity and statistical significance of the results were evaluated by comparing the spatial distance of randomly selected feature points with their corresponding tape measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several research studies have been recently initiated to investigate the use of construction site images for automated infrastructure inspection, progress monitoring, etc. In these studies, it is always necessary to extract material regions (concrete or steel) from the images. Existing methods made use of material's special color/texture ranges for material information retrieval, but they do not sufficiently discuss how to find these appropriate color/texture ranges. As a result, users have to define appropriate ones by themselves, which is difficult for those who do not have enough image processing background. This paper presents a novel method of identifying concrete material regions using machine learning techniques. Under the method, each construction site image is first divided into regions through image segmentation. Then, the visual features of each region are calculated and classified with a pre-trained classifier. The output value determines whether the region is composed of concrete or not. The method was implemented using C++ and tested over hundreds of construction site images. The results were compared with the manual classification ones to indicate the method's validity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manually inspecting concrete surface defects (e.g., cracks and air pockets) is not always reliable. Also, it is labor-intensive. In order to overcome these limitations, automated inspection using image processing techniques was proposed. However, the current work can only detect defects in an image without the ability of evaluating them. This paper presents a novel approach for automatically assessing the impact of two common surface defects (i.e., air pockets and discoloration). These two defects are first located using the developed detection methods. Their attributes, such as the number of air pockets and the area of discoloration regions, are then retrieved to calculate defects’ visual impact ratios (VIRs). The appropriate threshold values for these VIRs are selected through a manual rating survey. This way, for a given concrete surface image, its quality in terms of air pockets and discoloration can be automatically measured by judging whether their VIRs are below the threshold values or not. The method presented in this paper was implemented in C++ and a database of concrete surface images was tested to validate its performance. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CO.1943-7862.0000126?journalCode=jcemd4

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air pockets, one kind of concrete surface defects, are often created on formed concrete surfaces during concrete construction. Their existence undermines the desired appearance and visual uniformity of architectural concrete. Therefore, measuring the impact of air pockets on the concrete surface in the form of air pockets is vital in assessing the quality of architectural concrete. Traditionally, such measurements are mainly based on in-situ manual inspections, the results of which are subjective and heavily dependent on the inspectors’ own criteria and experience. Often, inspectors may make different assessments even when inspecting the same concrete surface. In addition, the need for experienced inspectors costs owners or general contractors more in inspection fees. To alleviate these problems, this paper presents a methodology that can measure air pockets quantitatively and automatically. In order to achieve this goal, a high contrast, scaled image of a concrete surface is acquired from a fixed distance range and then a spot filter is used to accurately detect air pockets with the help of an image pyramid. The properties of air pockets (the number, the size, and the occupation area of air pockets) are subsequently calculated. These properties are used to quantify the impact of air pockets on the architectural concrete surface. The methodology is implemented in a C++ based prototype and tested on a database of concrete surface images. Comparisons with manual tests validated its measuring accuracy. As a result, the methodology presented in this paper can increase the reliability of concrete surface quality assessment

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manually inspecting bridges is a time-consuming and costly task. There are over 600,000 bridges in the US, and not all of them can be inspected and maintained within the specified time frame as some state DOTs cannot afford the essential costs and manpower. This paper presents a novel method that can detect bridge concrete columns from visual data for the purpose of eventually creating an automated bridge condition assessment system. The method employs SIFT feature detection and matching to find overlapping areas among images. Affine transformation matrices are then calculated to combine images containing different segments of one column into a single image. Following that, the bridge columns are detected by identifying the boundaries in the stitched image and classifying the material within each boundary. Preliminary test results using real bridge images indicate that most columns in stitched images can be correctly detected and thus, the viability of the application of this research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an analytical modeling technique for the simulation of long-range ultrasonic guided waves in structures. The model may be used to predict the displacement field in a prismatic structure arising from any excitation arrangement and may therefore be used as a tool to design new inspection systems. It is computationally efficient and relatively simple to implement, yet gives accuracy similar to finite element analysis and semi-analytical finite element analysis methods. The model has many potential applications; one example is the optimization of part-circumferential arrays where access to the full circumference of the pipe is restricted. The model has been successfully validated by comparison with finite element solutions. Experimental validation has also been carried out using an array of piezoelectric transducer elements to measure the displacement field arising from a single transducer element in an 88.9-mm-diameter pipe. Good agreement has been obtained between the two models and the experimental data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physical meaning and calculation procedures for determining loudness was critically analyzed. Four noise sources were used in comparing the software packages dBFA dBSonic, which were used in the investigation to a public domain code. The purpose of the comparison was to evaluate the validity of the results obtained and to gain an idea of the shortcomings of the relevant standards. A comparison of the results for loudness was computed from various methods, used in the study. Two basic sources of input data such as a sound level meter (SLM) and a 01 dB data acquisition system (DAQ), were available for the comparison. The SLM directly gave 1/3 octave band levels, while the data from the DAQ was filtered to give the results. Five processing methods, including a Visual Basic (VB) program and a VB program adapted from dBFA, were used for the study. It was found that the calculation of loudness from 1/3 octave cannot be separated from the filtering process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inclusive design has unique challenges because it aims to improve usability for a wide range of users. This typically includes people with lower levels of ability, as well as mainstream users. This paper examines the effectiveness of two methods that are used in inclusive design: user trials and exclusion calculations (an inclusive design inspection method). A study examined three autoinjectors using both methods (n=30 for the user trials). The usability issues identified by each method are compared and the effectiveness of the methods is discussed. The study found that each method identified different kinds of issues, all of which are important for inclusive design. We therefore conclude that a combination of methods should be used in inclusive design rather than relying on a single method. Recommendations are also given for how the individual methods can be used more effectively in this context.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection performance regarding stationary acoustic monitoring of Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis was compared to visual observations. Three stereo acoustic data loggers (A-tag) were placed at different locations near the confluence of Poyang Lake and the Yangtze River, China. The presence and number of porpoises were determined acoustically and visually during each 1-min time bin. On average, porpoises were acoustically detected 81.7 +/- 9.7% of the entire effective observation time, while the presence of animals was confirmed visually 12.7 +/- 11.0% of the entire time. Acoustic monitoring indicated areas of high and low porpoise densities that were consistent with visual observations. The direction of porpoise movement was monitored using stereo beams, which agreed with visual observations at all monitoring locations. Acoustic and visual methods could determine group sizes up to five and ten individuals, respectively. While the acoustic monitoring method had the advantage of high detection probability, it tended to underestimate group size due to the limited resolution of sound source bearing angles. The stationary acoustic monitoring method proved to be a practical and useful alternative to visual observations, especially in areas of low porpoise density for long-term monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important for practical application to design an effective and efficient metric for video quality. The most reliable way is by subjective evaluation. Thus, to design an objective metric by simulating human visual system (HVS) is quite reasonable and available. In this paper, the video quality assessment metric based on visual perception is proposed. Three-dimensional wavelet is utilized to decompose video and then extract features to mimic the multichannel structure of HVS. Spatio-temporal contrast sensitivity function (S-T CSF) is employed to weight coefficient obtained by three-dimensional wavelet to simulate nonlinearity feature of the human eyes. Perceptual threshold is exploited to obtain visual sensitive coefficients after S-T CSF filtered. Visual sensitive coefficients are normalized representation and then visual sensitive errors are calculated between reference and distorted video. Finally, temporal perceptual mechanism is applied to count values of video quality for reducing computational cost. Experimental results prove the proposed method outperforms the most existing methods and is comparable to LHS and PVQM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research project is a study of the role of fixation and visual attention in object recognition. In this project, we build an active vision system which can recognize a target object in a cluttered scene efficiently and reliably. Our system integrates visual cues like color and stereo to perform figure/ground separation, yielding candidate regions on which to focus attention. Within each image region, we use stereo to extract features that lie within a narrow disparity range about the fixation position. These selected features are then used as input to an alignment-style recognition system. We show that visual attention and fixation significantly reduce the complexity and the false identifications in model-based recognition using Alignment methods. We also demonstrate that stereo can be used effectively as a figure/ground separator without the need for accurate camera calibration.