871 resultados para User-based collaborative filtering


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aims: To determine if general practitioners' (GPs) experience of education on alcohol, support in their working environment for intervening with alcohol problems, and their attitudes have an impact on the number of patients they manage with alcohol problems. Methods: 1300 GPs from nine countries were surveyed with a postal questionnaire as part of a World Health Organization (WHO) collaborative study. Results: GPs who received more education on alcohol (OR = 1.5; 95% CI, 1.3-1.7), who perceived that they were working in a supportive environment (OR = 1.6; 95% CI, 1.4-1.9), who expressed higher role security in working with alcohol problems (OR = 2.0; 95% CI, 1.5-2.5) and who reported greater therapeutic commitment to working with alcohol problems (OR = 1.4: 95% CI, 1.1-1.7) were more likely to manage patients with alcohol-related harm. Conclusion: Both education and support in the working environment need to be provided to enhance the involvement of GPs in the management of alcohol problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There has been an increased demand for characterizing user access patterns using web mining techniques since the informative knowledge extracted from web server log files can not only offer benefits for web site structure improvement but also for better understanding of user navigational behavior. In this paper, we present a web usage mining method, which utilize web user usage and page linkage information to capture user access pattern based on Probabilistic Latent Semantic Analysis (PLSA) model. A specific probabilistic model analysis algorithm, EM algorithm, is applied to the integrated usage data to infer the latent semantic factors as well as generate user session clusters for revealing user access patterns. Experiments have been conducted on real world data set to validate the effectiveness of the proposed approach. The results have shown that the presented method is capable of characterizing the latent semantic factors and generating user profile in terms of weighted page vectors, which may reflect the common access interest exhibited by users among same session cluster.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Web transaction data between Web visitors and Web functionalities usually convey user task-oriented behavior pattern. Mining such type of click-stream data will lead to capture usage pattern information. Nowadays Web usage mining technique has become one of most widely used methods for Web recommendation, which customizes Web content to user-preferred style. Traditional techniques of Web usage mining, such as Web user session or Web page clustering, association rule and frequent navigational path mining can only discover usage pattern explicitly. They, however, cannot reveal the underlying navigational activities and identify the latent relationships that are associated with the patterns among Web users as well as Web pages. In this work, we propose a Web recommendation framework incorporating Web usage mining technique based on Probabilistic Latent Semantic Analysis (PLSA) model. The main advantages of this method are, not only to discover usage-based access pattern, but also to reveal the underlying latent factor as well. With the discovered user access pattern, we then present user more interested content via collaborative recommendation. To validate the effectiveness of proposed approach, we conduct experiments on real world datasets and make comparisons with some existing traditional techniques. The preliminary experimental results demonstrate the usability of the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Collaborative recommendation is one of widely used recommendation systems, which recommend items to visitor on a basis of referring other's preference that is similar to current user. User profiling technique upon Web transaction data is able to capture such informative knowledge of user task or interest. With the discovered usage pattern information, it is likely to recommend Web users more preferred content or customize the Web presentation to visitors via collaborative recommendation. In addition, it is helpful to identify the underlying relationships among Web users, items as well as latent tasks during Web mining period. In this paper, we propose a Web recommendation framework based on user profiling technique. In this approach, we employ Probabilistic Latent Semantic Analysis (PLSA) to model the co-occurrence activities and develop a modified k-means clustering algorithm to build user profiles as the representatives of usage patterns. Moreover, the hidden task model is derived by characterizing the meaningful latent factor space. With the discovered user profiles, we then choose the most matched profile, which possesses the closely similar preference to current user and make collaborative recommendation based on the corresponding page weights appeared in the selected user profile. The preliminary experimental results performed on real world data sets show that the proposed approach is capable of making recommendation accurately and efficiently.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper describes two new transport layer (TCP) options and an expanded transport layer queuing strategy that facilitate three functions that are fundamental to the dispatching-based clustered service. A transport layer option has been developed to facilitate. the use of client wait time data within the service request processing of the cluster. A second transport layer option has been developed to facilitate the redirection of service requests by the cluster dispatcher to the cluster processing member. An expanded transport layer service request queuing strategy facilitates the trust based filtering of incoming service requests so that a graceful degradation of service delivery may be achieved during periods of overload - most dramatically evidenced by distributed denial of service attacks against the clustered service. We describe how these new options and queues have been implemented and successfully tested within the transport layer of the Linux kernel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In Information Filtering (IF) a user may be interested in several topics in parallel. But IF systems have been built on representational models derived from Information Retrieval and Text Categorization, which assume independence between terms. The linearity of these models results in user profiles that can only represent one topic of interest. We present a methodology that takes into account term dependencies to construct a single profile representation for multiple topics, in the form of a hierarchical term network. We also introduce a series of non-linear functions for evaluating documents against the profile. Initial experiments produced positive results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The CancerGrid consortium is developing open-standards cancer informatics to address the challenges posed by modern cancer clinical trials. This paper presents the service-oriented software paradigm implemented in CancerGrid to derive clinical trial information management systems for collaborative cancer research across multiple institutions. Our proposal is founded on a combination of a clinical trial (meta)model and WSRF (Web Services Resource Framework), and is currently being evaluated for use in early phase trials. Although primarily targeted at cancer research, our approach is readily applicable to other areas for which a similar information model is available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A high frequency sensing interrogation system by using fiber Bragg grating based microwave photonic filtering is proposed, in which the wavelength measurement sensitivity is proportional to the RF modulation frequency applied to the optical signal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel high-frequency fiber Bragg grating (FBG) sensing interrogation system by using fiber Sagnac-loop-based microwave photonic filtering is proposed and experimentally demonstrated. By adopting the microwave photonic filtering, the wavelength shift of sensing FBG can be converted into amplitude variation of the modulated electronic radio-frequency (RF) signal. In the experiment, the strain applied onto the sensing FBG has been demodulated by measuring the intensity of the recovered RF signal, and by modulating the RF signal with different frequencies, different interrogation sensitivities can be achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Collaborative working with the aid of computers is increasing rapidly due to the widespread use of computer networks, geographic mobility of people, and small powerful personal computers. For the past ten years research has been conducted into this use of computing technology from a wide variety of perspectives and for a wide range of uses. This thesis adds to that previous work by examining the area of collaborative writing amongst groups of people. The research brings together a number of disciplines, namely sociology for examining group dynamics, psychology for understanding individual writing and learning processes, and computer science for database, networking, and programming theory. The project initially looks at groups and how they form, communicate, and work together, progressing on to look at writing and the cognitive processes it entails for both composition and retrieval. The thesis then details a set of issues which need to be addressed in a collaborative writing system. These issues are then followed by developing a model for collaborative writing, detailing an iterative process of co-ordination, writing and annotation, consolidation, and negotiation, based on a structured but extensible document model. Implementation issues for a collaborative application are then described, along with various methods of overcoming them. Finally the design and implementation of a collaborative writing system, named Collaborwriter, is described in detail, which concludes with some preliminary results from initial user trials and testing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The work described was carried out as part of a collaborative Alvey software engineering project (project number SE057). The project collaborators were the Inter-Disciplinary Higher Degrees Scheme of the University of Aston in Birmingham, BIS Applied Systems Ltd. (BIS) and the British Steel Corporation. The aim of the project was to investigate the potential application of knowledge-based systems (KBSs) to the design of commercial data processing (DP) systems. The work was primarily concerned with BIS's Structured Systems Design (SSD) methodology for DP systems development and how users of this methodology could be supported using KBS tools. The problems encountered by users of SSD are discussed and potential forms of computer-based support for inexpert designers are identified. The architecture for a support environment for SSD is proposed based on the integration of KBS and non-KBS tools for individual design tasks within SSD - The Intellipse system. The Intellipse system has two modes of operation - Advisor and Designer. The design, implementation and user-evaluation of Advisor are discussed. The results of a Designer feasibility study, the aim of which was to analyse major design tasks in SSD to assess their suitability for KBS support, are reported. The potential role of KBS tools in the domain of database design is discussed. The project involved extensive knowledge engineering sessions with expert DP systems designers. Some practical lessons in relation to KBS development are derived from this experience. The nature of the expertise possessed by expert designers is discussed. The need for operational KBSs to be built to the same standards as other commercial and industrial software is identified. A comparison between current KBS and conventional DP systems development is made. On the basis of this analysis, a structured development method for KBSs in proposed - the POLITE model. Some initial results of applying this method to KBS development are discussed. Several areas for further research and development are identified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this chapter we present the relevant mathematical background to address two well defined signal and image processing problems. Namely, the problem of structured noise filtering and the problem of interpolation of missing data. The former is addressed by recourse to oblique projection based techniques whilst the latter, which can be considered equivalent to impulsive noise filtering, is tackled by appropriate interpolation methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the design and results of a task-based user study, based on Information Foraging Theory, on a novel user interaction framework - uInteract - for content-based image retrieval (CBIR). The framework includes a four-factor user interaction model and an interactive interface. The user study involves three focused evaluations, 12 simulated real life search tasks with different complexity levels, 12 comparative systems and 50 subjects. Information Foraging Theory is applied to the user study design and the quantitative data analysis. The systematic findings have not only shown how effective and easy to use the uInteract framework is, but also illustrate the value of Information Foraging Theory for interpreting user interaction with CBIR. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper proposes an ISE (Information goal, Search strategy, Evaluation threshold) user classification model based on Information Foraging Theory for understanding user interaction with content-based image retrieval (CBIR). The proposed model is verified by a multiple linear regression analysis based on 50 users' interaction features collected from a task-based user study of interactive CBIR systems. To our best knowledge, this is the first principled user classification model in CBIR verified by a formal and systematic qualitative analysis of extensive user interaction data. Copyright 2010 ACM.