997 resultados para Uranium-Lead Isotope


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geophysical surveys of the Mariana forearc, in an area equidistant from the Mariana Trench and the active Mariana Island Arc, revealed a 40-m-deep graben about 13 km northwest of Conical Seamount, a serpentine mud volcano. The graben and its bounding horst blocks are part of a fault zone that strikes northwest-southeast beneath Conical Seamount. One horst block was drilled during Leg 125 of the Ocean Drilling Program (Site 781). Three lithologic units were recovered at Site 781: an upper sedimentary unit, a middle basalt unit, and a lower sedimentary unit. The upper unit, between 0 and 72 mbsf, consists of upper Pliocene to Holocene diatomaceous and radiolarian-bearing silty clay that grades down into vitric silty clay and vitric clayey silt. The middle unit is a Pleistocene vesicular, porphyritic basalt, the top of which corresponds to a high-amplitude reflection on the reflection profiles. The lower unit is a middle to upper (and possibly some lower) Pliocene vitric silty clay and vitric clayey silt similar to the lower part of the upper unit. The thickness of the basalt unit can only be estimated to be between 13 and 25 m because of poor core recovery (28% to 55%). The absence of internal flow structures and the presence of an upper glassy chilled zone and a lower, fine-grained margin suggest that the basalt unit is either a single lava flow or a near-surface sill. The basalt consists of plagioclase phenocrysts with subordinate augite and olivine phenocrysts and of plagioclase-augite-olivine glomerocrysts in a groundmass of plagioclase, augite, olivine, and glass. The basalt is an island arc tholeiite enriched in large-ion-lithophile elements relative to high-field-strength elements, similar to the submarine lavas of the southern arc seamounts. In contrast, volcanic rocks from the active volcanoes on Pagan and Agrigan islands, 100 km to the west of the drill site, are calc-alkaline. The basalt layer, the youngest in-situ igneous layer reported from the Izu-Bonin and Mariana forearcs, is enigmatic because of its location more than 100 km from the active volcanic arc. The sediment layers above and below the basalt unit are late Pliocene in age (about 2.5 Ma) and normally magnetized. The basalt has schlierenlike structures, reverse magnetization, and a K-Ar age of 1.68±0.37 Ma. Thus, the basalt layer is probably a sill fed by magma intruded along a fault zone bounding the horst and graben in the forearc. The geochemistry of the basalt is consistent with a magma source similar to that of the active island arc and from a mantle source above the subducting Pacific plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neodymium isotopic composition of marine precipitates is increasingly recognized as a powerful tool for identifying changes in ocean circulation and mixing on million year to millennial timescales. Unlike nutrient proxies such as ?13C or Cd/Ca, Nd isotopes are not thought to be altered in any significant way by biological processes, and thus they can serve as a quasi-conservative water mass tracer. However, the application of Nd isotopes in understanding the role of thermohaline circulation in rapid climate change is currently hindered by the lack of direct constraints on the signature of the North Atlantic end-member through time. Here we present the first results of Nd isotopes measured in U-Th-dated deep-sea corals from the New England seamounts in the northwest Atlantic Ocean. Our data are consistent with the conclusion that the Nd isotopic composition of North Atlantic deep and intermediate water has remained nearly constant through the last glacial cycle. The results address long-standing concerns that there may have been significant changes in the Nd isotopic composition of the North Atlantic end-member during this interval and substantiate the applicability of this novel tracer on millennial timescales for paleoceanography research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magmatic rocks of the Shatsky Rise form two groups replacing one another in time. The earlier ferrotholeiites enriched in potassium compose large massifs. Trachybasalts form seamounts and neotectonic ridges. Composition of volcanites indicates that two sources of magmatism took part in their formation: a depleted source characteristic of basalts of mid-ocean ridges and a ''plume'' source participating in formation of oceanic plateaus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Elemental and Pb isotope measurements were performed on leachates and residues from surface sediments and two <50 cm cores (MC04 and MC16) collected along a NE-SW transect through Fram Strait. Geochemical and isotopic properties of residues from surface sediments define three distinct spatial domains within the Strait: 1) the easternmost edge of the Strait; 2) the eastern part of the Strait off the Svalbard margins; and 3) the western part of the Strait, influenced by supplies from Svalbard, the Nordic seas with possible contributions from northwestern Siberian margins, and sea ice and water outflow from the Arctic, respectively. Core MC16, in the third domain beneath the outflowing Arctic waters, spans the Last Glacial Maximum present interval. Sediments from this core were leached to obtain detrital (residues) and exchangeable (leachates) fractions. Detrital supplies to core MC16 are believed to originate mainly from melting of the overlying sea ice and thus can be used to document changes in Arctic sedimentary sources. Detrital 206Pb/204Pb and 208Pb/206Pb ratios illustrate two mixing trends, Trends A and B, corresponding to the pre- and post-Younger Dryas (YD) intervals, respectively. These trends represent binary mixtures with a common end-member (Canadian margins) and either a Siberian (Trend A) or Greenland (Trend B) margin end-member. The YD is marked by an isotopic excursion toward the Canadian end-member, suggesting a very active Beaufort Gyre possibly triggered by massive drainage of the Laurentide ice sheet. Pb isotope compositions of leachates, thought to represent the signature of the overlying water masses, define a unique linear trend coincident with Trend A. This suggests that water masses acquired their signature through exchange with particulate fluxes along the Canadian and Siberian continental margins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Taupo Volcanic Zone (TVZ), central North Island, New Zealand, is the most frequently active Quaternary rhyolitic system in the world. Silicic tephras recovered from Ocean Drilling Programme Site 1123 (41°47.16'S, 171°29.94'W; 3290 m water depth) in the southwest Pacific Ocean provide a well-dated record of explosive TVZ volcanism since ~1.65 Ma. We present major, minor and trace element data for 70 Quaternary tephra layers from Site 1123 determined by electron probe microanalysis (1314 analyses) and laser ablation inductively coupled plasma mass spectrometry (654 analyses). Trace element data allow for the discrimination of different tephras with similar major element chemistries and the establishment of isochronous tie-lines between three sediment cores (1123A, 1123B and 1123C) recovered from Site 1123. These tephra tie-lines are used to evaluate the stratigraphy and orbitally tuned stable isotope age model of the Site 1123 composite record. Trace element fingerprinting of tephras identifies ~4.5 m and ~7.9 m thick sections of repeated sediments in 1123A (49.0-53.5 mbsf [metres below seafloor]) and 1123C (48.1-56.0 mbsf), respectively. These previously unrecognised repeated sections have resulted in significant errors in the Site 1123 composite stratigraphy and age model for the interval 1.15-1.38 Ma and can explain the poor correspondence between d18O profiles for Site 1123 and Site 849 (equatorial Pacific) during this interval. The revised composite stratigraphy for Site 1123 shows that the 70 tephra layers, when correlated between cores, correspond to ~37-38 individual eruptive events (tephras), 7 of which can be correlated to onshore TVZ deposits. The frequency of large-volume TVZ-derived silicic eruptions, as recorded by the deposition of tephras at Site 1123, has not been uniform through time. Rather it has been typified by short periods (25-50 ka) of intense activity bracketed by longer periods (100-130 ka) of quiescence. The most active period (at least 1 event per 7 ka) occurred between ~1.53 and 1.66 Ma, corresponding to the first ~130 ka of TVZ rhyolitic magmatism. Since 1.2 Ma, ~80% of tephras preserved at Site 1123 and the more proximal Site 1124 were erupted and deposited during glacial periods. This feature may reflect either enhanced atmospheric transport of volcanic ash to these sites (up to 1000 km from source) during glacial conditions or, more speculatively, that these events are triggered by changes in crustal stress accumulation associated with large amplitude sea-level changes. Only 8 of the ~37-38 Site 1123 tephra units (~20%) can be found in all three cores, and 22 tephra units (~60%) are only present in one of the three cores. Whether a tephra is preserved in all three cores does not have any direct relationship to eruptive volume. Instead it is postulated that tephra preservation at Site 1123 is 'patchy' and influenced by the vigorous nature of their deposition to the deep ocean floor as vertical density currents. At this site, at least 5 cores would need to have been drilled within a proximity of 10's to 100's of metres of each other to yield a >99% chance of recovering all the silicic tephras deposited on the ocean surface above it in the past 1.65 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Yangla copper deposit, situated in the middle section of Jinshajiang tectonic belt between Zhongza-Zhongdian block and Changdu-Simao block, is a representative and giant copper deposit that has been discovered in Jinshajiang-Lancangjiang-Nujiang region in recent years. There are coupled relationship between Yangla granodiorite and copper mineralization in the Yangla copper deposit. Five molybdenite samples yielded a well-constrained 187Re-187Os isochron age of 233.3±3 Ma, the metallogenesis is therefore slightly younger than the crystallization age of the granodiorite. S, Pb isotopic compositions of the Yangla copper deposit indicate that the ore-forming materials were derived from the mixture of upper crust and mantle, also with the magmatic contributions. In the late Early Permian, the Jinshajiang Oceanic plate was subducted to the west, resulting in the formation of a series of gently dipping thrust faults in the Jinshajiang tectonic belt, meanwhile, accompanied magmatic activities. In the early Late Triassic, which was a time of transition from collision-related compression to extension in the Jinshajiang tectonic belt, the thrust faults were tensional; it would have been a favorable environment for forming ore fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Yangla granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Yangla granodiorite, resulting in mineralization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new major and trace element and O-Sr-Nd-isotope data for igneous rocks from the western Mediterranean Alborán Sea, collected during the METEOR 51/1 cruise, and for high-grade schists and gneisses from the continental Alborán basement, drilled during the Ocean Drilling Programme (ODP Leg 161, Site 976). The geochemical data allow a detailed examination of crustal and mantle processes involved in the petrogenesis of the lavas and for the first time reveal a zonation of the Miocene Alborán Sea volcanism: (1) a keel-shaped area of LREE-depleted (mainly tholeiitic series) lavas in the central Alborán Sea, generated by high degrees of partial melting of a depleted mantle source and involving hydrous fluids from subducted marine sediments, that is surrounded by (2) a horseshoe-shaped zone with LREE-enriched (mainly calc-alkaline series) lavas subparallel to the arcuate Betic-Gibraltar-Rif mountain belt. We propose that the geochemical zonation of the Miocene Alborán Basin volcanism results from eastward subduction of Tethys oceanic lithosphere coupled with increasing lithospheric thickness between the central Alborán Sea and the continental margins of Iberia and Africa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The carbonate-free metalliferous fraction of thirty-nine sediment samples from four DSDP Leg 92 sites has been analyzed for 12 elements, and a subset of 16 samples analyzed for Pb isotopic composition. The main geochemical features of this component are as follows: i) very high concentrations of Fe and Mn, typically 25-39% and 5-14%, respectively; ii) Al and Ca contents generally less than 2% and 5%, respectively; iii) high Cu (1000-2000 ppm), and Zn and Ni (500-1000 ppm) values; and iv) Co and Pb concentrations of 100-250 ppm. In terms of element partitioning within the metalliferous fraction, amorphous to poorly crystallized oxide-oxyhydroxides removed by the second leach carry virtually all of the Mn, and about 90% of the Ca, Sr and Ni. The well-crystallized goethite-rich material removed by the third leach carries the majority of Fe, Cu, and Pb. These relations hold for sediments as young as ~1-2 Ma, indicating early partitioning of hydrothermal Fe and Mn into separate phases. Calculated mass accumulation rates (MAR) for Fe, Mn, Cu, Pb, Zn and Ni in the bulk sediment show the same overall trends at three of the sites, with greatest MAR values near the basement, and a general decrease in MAR values towards the tops of the holes (for sediments deposited above the lysocline). These relations strongly support the concept of a declining hydrothermal contribution of these elements away from a ridge axis. Nevertheless, MAR values for these metals up to ~200 km from the ridge axis are orders of magnitude higher than on abyssal seafloor plains where there is no hydrothermal influence. Mn/Fe ratios throughout the sediment column at two sites indicate that the composition of the hydrothermal precipitates changed during transport through seawater, becoming significantly depleted in Mn beyond ~200-300 km from the axis, but maintaining roughly the same proportion of Fe. Most of the Pb isotope data for the Leg 92 metalliferous sediments form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts toward the field for Mn nodules. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb derived from basaltic and seawater end-member sources. The least radiogenic sediments reflect the average Pb isotope composition of discharging hydrothermal solutions and ocean-ridge basalt at the EPR over the ~4-8 Ma B.P. interval. Pb in sediments deposited up to 250 km from the axis can be almost entirely of basaltic-hydrothermal origin. Lateral transport of some basaltic Pb by ocean currents appears to extend to distances of at least 1000 km west of the East Pacific Rise.