944 resultados para UV CETI STARS
Resumo:
Throughout Earth's history there have been temporal and spatial variations in the amount of visible and ultraviolet radiation received by ecosystems. This paper examines if temporal changes in these forms of energy receipt could have influenced the tempo and mode of plant diversity and speciation, focusing in particular upon Cenozoic time-scales. Evidence for changing patterns of plant diversity and speciation apparent in various fossil records and molecular phylogenies are considered alongside calculated changes in thermal and solar ultraviolet energy (specifically UV-B) over the past 50 Myr. We suggest that changes in thermal energy influx (amount and variability) affected the tempo of evolution through its influence upon community dynamics (e.g. population size, diversity, turnover, extinctions). It was not only the amount of thermal energy but also variability in its flux that may have influenced these processes, and ultimately the rate of diversification. We suggest that variations in UV-B would have influenced the mode and tempo of speciation through changes to genome stability during intervals of elevated UV-B. We argue, therefore, that although variability in thermal energy and UV-B fluxes through time may lead to the same end-point (changing the rate of diversification), the processes responsible are very different and both need to be considered when linking evolutionary processes to energy flux.
Resumo:
Metrology of XUV beams (X-ray lasers, high-harmonic generation and VUV free-electron lasers) is of crucial importance for the development of applications. We have thus developed several new optical systems enabling us to measure the optical properties of XUV beams. By use of a Michelson interferometer working as a Fourier-transform spectrometer, the line shapes of different X-ray lasers have been measured with a very high accuracy (Deltalambda/lambdasimilar to10(-6)). Achievement of the first XUV wavefront sensor has enabled us to measure the beam quality of laser-pumped as well as discharge-pumped X-ray lasers. A capillary discharge X-ray laser has demonstrated a very good wavefront allowing us to achieve an intensity as high as 3x10(14) W cm(-2) by focusing with a f=5 cm mirror. The sensor accuracy has been measured using a calibrated spherical wave generated by diffraction. The accuracy has been estimated to be as good as lambda/120 at 13 nm. Commercial developments are underway. At Laboratoire d'Optique Appliquee, we are setting up a new beamline based on high-harmonic generation in order to start the femtosecond, coherent XUV optic .
Resumo:
We correct the estimates of the dispersions in the rotational velocities for early-type stars in our Galaxy (Dufton et al. 2006, A&A, 457, 265) and the Magellanic Clouds (Hunter et al. 2008, A&A, 479, 541). The corrected values are pi(1/4) (i.e. approximately 33%) larger than those published in the original papers.
Resumo:
Aims. We have previously analysed the spectra of 135 early B-type stars in the Large Magellanic Cloud (LMC) and found several groups of stars that have chemical compositions that conflict with the theory of rotational mixing. Here we extend this study to Galactic and Small Magellanic Cloud (SMC) metallicities.
Resumo:
We present observations of two new single-lined eclipsing binaries, both consisting of an Am star and an M-dwarf, discovered by the Wide Angle Search for Planets transit photometry survey. Using WASP photometry and spectroscopic measurements we find that HD 186753B has an orbital period of P=1.9194 days, a mass of M=0.24±0.02~M? and radius of R=0.31+0.06-0.06~R?; and that TCY7096-222-1B has an orbital period of P=8.9582 days, a mass of between 0.29 and 0.54 M? depending on eccentricity and radius of R=0.263+0.02-0.07~R?. We find that the Am stars have relatively low rotational velocities that closely match the orbital velocities of the M-dwarfs, suggesting that they have been “spun-down” by the M-dwarfs.
The death of massive stars - I. Observational constraints on the progenitors of Type II-P supernovae
Resumo:
We present the results of a 10.5-yr, volume-limited (28-Mpc) search for supernova (SN) progenitor stars. In doing so we compile all SNe discovered within this volume (132, of which 27 per cent are Type Ia) and determine the relative rates of each subtype from literature studies. The core-collapse SNe break down into 59 per cent II-P and 29 per cent Ib/c, with the remainder being IIb (5 per cent), IIn (4 per cent) and II-L (3 per cent). There have been 20 II-P SNe with high-quality optical or near-infrared pre-explosion images that allow a meaningful search for the progenitor stars. In five cases they are clearly red supergiants, one case is unconstrained, two fall on compact coeval star clusters and the other twelve have no progenitor detected. We review and update all the available data for the host galaxies and SN environments (distance, metallicity and extinction) and determine masses and upper mass estimates for these 20 progenitor stars using the STARS stellar evolutionary code and a single consistent homogeneous method. A maximum likelihood calculation suggests that the minimum stellar mass for a Type II-P to form is m(min) = 8.5(-1.5)(+1) M-circle dot and the maximum mass for II-P progenitors is m(max) = 16.5 +/- 1.5 M-circle dot, assuming a Salpeter initial mass function holds for the progenitor population (in the range Gamma = -1.35(-0.7)(+0.3)). The minimum mass is consistent with current estimates for the upper limit to white dwarf progenitor masses, but the maximum mass does not appear consistent with massive star populations in Local Group galaxies. Red supergiants in the Local Group have masses up to 25 M-circle dot and the minimum mass to produce a Wolf-Rayet star in single star evolution (between solar and LMC metallicity) is similarly 25-30 M-circle dot. The reason we have not detected any high-mass red supergiant progenitors above 17 M-circle dot is unclear, but we estimate that it is statistically significant at 2.4 sigma confidence. Two simple reasons for this could be that we have systematically underestimated the progenitor masses due to dust extinction or that stars between 17-25 M-circle dot produce other kinds of SNe which are not II-P. We discuss these possibilities and find that neither provides a satisfactory solution. We term this discrepancy the 'red supergiant problem' and speculate that these stars could have core masses high enough to form black holes and SNe which are too faint to have been detected. We compare the Ni-56 masses ejected in the SNe to the progenitor mass estimates and find that low-luminosity SNe with low Ni-56 production are most likely to arise from explosions of low-mass progenitors near the mass threshold that can produce a core-collapse.
Resumo:
We present high-accuracy calculations of ionization rates of helium at UV (195 nm) wavelengths. The data are obtained from full-dimensionality integrations of the helium-laser time-dependent Schrödinger equation. Comparison is made with our previously obtained data at 390 nm and 780 nm. We show that scaling laws introduced by Parker et al extend unmodified from the near-infrared limit into the UV limit. Static-field ionization rates of helium are also obtained, again from time-dependent full-dimensionality integrations of the helium Schrödinger equation. We compare the static-field ionization results with those of Scrinzi et al and Themelis et al, who also treat the full-dimensional helium atom, but with time-independent methods. Good agreement is obtained.
Resumo:
SuWt 2 is a planetary nebula (PN) consisting of a bright ionized thin ring seen nearly edge-on, with much fainter bipolar lobes extending perpendicularly to the ring. It has a bright (12th magnitude) central star, too cool to ionize the PN, which we discovered in the early 1990s to be an eclipsing binary. Although it was anticipated that there would also be an optically faint, hot, ionizing star in the system, a spectrum from the International Ultraviolet Explorer (IUE) did not reveal a UV source. We present extensive ground-based photometry and spectroscopy of the central binary collected over the ensuing two decades, resulting in the determination that the orbital period of the eclipsing pair is 4.9 days, and that it consists of two nearly identical A1 V stars, each of mass ~2.7 M sun. The physical parameters of the A stars, combined with evolutionary tracks, show that both are in the short-lived "blue-hook" evolutionary phase that occurs between the main sequence and the Hertzsprung gap, and that the age of the system is about 520 Myr. One puzzle is that the stars' rotational velocities are different from each other, and considerably slower than synchronous with the orbital period. It is possible that the center-of-mass velocity of the eclipsing pair is varying with time, suggesting that there is an unseen third orbiting body in the system. We propose a scenario in which the system began as a hierarchical triple, consisting of a ~2.9 M sun star orbiting the close pair of A stars. Upon reaching the asymptotic giant branch stage, the primary engulfed the pair into a common envelope, leading to a rapid contraction of the orbit and catastrophic ejection of the envelope into the orbital plane. In this picture, the exposed core of the initial primary is now a white dwarf of ~0.7 M sun, orbiting the eclipsing pair, which has already cooled below the detectability possible by IUE at our derived distance of 2.3 kpc and a reddening of E(B - V) = 0.40. The SuWt 2 system may be destined to perish as a Type Ia supernova.
Resumo:
It has been widely thought that measuring the misalignment angle between the orbital plane of a transiting exoplanet and the spin of its host star was a good discriminator between different migration processes for hot-Jupiters. Specifically, well-aligned hot-Jupiter systems (as measured by the Rossiter-McLaughlin effect) were thought to have formed via migration through interaction with a viscous disc, while misaligned systems were thought to have undergone a more violent dynamical history. These conclusions were based on the assumption that the planet-forming disc was well-aligned with the host star. Recent work by Lai et al. has challenged this assumption, and proposes that the star-disc interaction in the pre-main sequence phase can exert a torque on the star and change its rotation axis angle. We have estimated the stellar rotation axis of a sample of stars which host spatially resolved debris disks. Comparison of our derived stellar rotation axis inclination angles with the geometrically measured debris-disk inclinations shows no evidence for a misalignment between the two.
Resumo:
The stellar rotation periods of 10 exoplanet host stars have been determined using newly analysed CaII H&K flux records from the Mount Wilson Observatory and Strömgren b, y photometric measurements from Tennessee State University's automatic photometric telescopes at the Fairborn Observatory. Five of the rotation periods have not previously been reported, with that of HD 130322 very strongly detected at Prot = 26.1 +/- 3.5 d. The rotation periods of five other stars have been updated using new data. We use the rotation periods to derive the line-of-sight inclinations of the stellar rotation axes, which may be used to probe theories of planet formation and evolution when combined with the planetary orbital inclination found from other methods. Finally, we estimate the masses of 14 exoplanets under the assumption that the stellar rotation axis is aligned with the orbital axis. We calculate the mass of HD 92788 b (28 MJ) to be within the low-mass brown dwarf regime and suggest that this object warrants further investigation to confirm its true nature.
Resumo:
Galactic bulge planetary nebulae show evidence of mixed chemistry with emission from both silicate dust and polycyclic aromatic hydrocarbons (PAHs). This mixed chemistry is unlikely to be related to carbon dredge-up, as third dredge-up is not expected to occur in the low-mass bulge stars. We show that the phenomenon is widespread and is seen in 30 nebulae out of 40 of our sample, selected on the basis of their infrared flux. Hubble Space Telescope (HST) images and Ultraviolet and Visual Echelle Spectrograph (UVES) spectra show that the mixed chemistry is not related to the presence of emission-line stars, as it is in the Galactic disc population. We also rule out interaction with the interstellar medium (ISM) as origin of the PAHs. Instead, a strong correlation is found with morphology and the presence of a dense torus. A chemical model is presented which shows that hydrocarbon chains can form within oxygen-rich gas through gas-phase chemical reactions. The model predicts two layers, one at A_V~ 1.5, where small hydrocarbons form from reactions with C+, and one at A_V~ 4, where larger chains (and by implication, PAHs) form from reactions with neutral, atomic carbon. These reactions take place in a mini-photon-dominated region (PDR). We conclude that the mixed-chemistry phenomenon occurring in the Galactic bulge planetary nebulae is best explained through hydrocarbon chemistry in an ultraviolet (UV)-irradiated, dense torus.