986 resultados para Tropical forest - Seed bank
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigated if differences in morphological characters in two species of Metrodorea (Rutaceae) from Brazilian semideciduous forests correspond to some pollination divergence. M. nigra and M. stipularis are sympatric species, display a similar floral morphology, are protandrous, self-incompatible, their flower periods overlap, and both are pollinated by flies. M. nigra main pollinators are Pseudoptiloleps nigripoda (Muscidae) and Fannia sp. (Fanniidae); M. stipularis major pollinators are Phaenicia eximia (Calliphoridae), Palpada sp. and Ornidia obesa (Syrphidae). The distinct floral odor (disagreeable in M. nigra and sweet in M. stipularis) and color (brownish violet vs. pale yellow) determine the differences on type and number of floral visitors observed. Several species from semideciduous forests initially considered to be pollinated by diverse insects, present flies as main pollinators, stressing the importance of fly pollination in such habitats.
Resumo:
Sebastiania commersoniana (Euphorbiaceae) is a tree species of riparian forests in Brazil. Seeds of this species released from mature fruits have heteromorphy in coat colour: dark (dark-brown to black), striated (dark with light-grey stria) and clear (light-grey to whitish). In this work two experiments were carried out in order to study the effect of temperature on seed germination in interaction with coat colour. Germination final percentage and speed index were evaluated. In the first experiment seeds of the three colours were submitted to constant (30°C) and alternating (20-35°C) temperatures. For all the seed colours, best results were obtained at alternating temperature. Physiological quality of striated seeds was greater than those clear seeds and dark seeds were intermediate. In the second experiment striated and clear seeds were submitted to three amplitudes of alternating temperature: 5°C (20-25°C and 25-30°C), 10°C (20-30°C and 25-35°C) and 15°C (20-35°C). Both germination percentage and speed were higher in striated seeds and for the two seed colours, best results were obtained at 20-30°C and 20-35°C. These temperatures are recommended for the germination test.
Resumo:
The regeneration of plant communities from seed depends, to a large extent, on the capacity of the seed remaining viable in the soil. The viability and germination of artificially buried Psychotria vellosiana seeds in cerrado soil were studied, with the purpose of discovering some physio-ecological aspects of dispersed seeds and evaluating their potential to constitute a soil seed bank. Seed samples were placed in nylon envelopes and buried in the soil of a Cerrado reserve at two different depths and sites. Buried seeds were retrieved periodically and tested for germination along with dry-stored seeds. In general, there was a reduction in seed germination with storage time, both in soil and dry stored conditions, and in some assays exhumed seeds germinated faster than dry stored ones. In general the soil storage favoured seed viability of ungerminated seeds as compared to dry stored ones, with the seeds remaining partially viable after 10 months of storage. The lack of germination of viable seeds suggests that seeds showed true dormancy and/or required an extended time to germinate. It was observed that some seeds had germinated while buried and such in situ germination tended to increase with rainfall. The water availability in the soil might be a limiting factor for successful germination of P. vellosiana in the field, and the seeds may constitute a persistent soil seed bank in the cerrado as dispersed seeds remain viable in the soil until the following period of seed dispersal.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The species Schizolobium amazonicum (Huber ex Ducke) commonly known as pinho-cuiabano or paricá, is one of the trees in Amazonian area used for plantings in degraded areas, reforestations and agroforestry systems. The present work evaluated the germinative behaviour of seeds of Schizolobium amazonicum in relation to the hydric stress, defining their levels of tolerance to those limitations in the environment. The seeds were collected from 30 trees in Alta Floresta-MT and submitted the dormancy treatment by submersion into water at 100°C for 1 minute; followed by treatment with fungicide Ridomil and Cercobin 0,25% each, then being left to germinate in a BOD camera at 30°C under a photoperiod of 12 hours. For evaluating the effect of different water potentials in the germinative process, polyethylene glicol (PEG 6000) was used and the salts NaCI and CaCl 2 used to simulate saline stress. The seeds were put to soak in potentials of 0 (control); -0.1 ; -0.2; -0.3; -0.4 and -0.5MPa. For each treatment 5 repetitions of 20 seeds were used in gerbox, placed between filter paper moistened with 20 mL of PEG, NaCI and CaCl 2 solutions. The solutions were changed at intervals of 24 hours for maintenance of the potential. The evaluations of percentages and germination speed were carry out daily for 8 days, being considered germinated the seeds that presented a 2mm root extension or longer. The data were submitted to analysis of variance and averages compared by the Tukey test at 5% probability. It was concluded that osmotic potentials between -0.4 and -0.5MPa inhibited the germination of seeds of Schizolobium amazonicum completely. The osmotic stress caused by CaCl 2, and PEG injured the germination more than did the stress caused by NaCl.
Resumo:
This study aimed at characterizing the potential for natural regeneration of native vegetation in the under-story of an earlier Eucalyptus saligna Smith production stand. The study was carried out at the Parque das Neblinas, Bertioga municipality, SP, in a 45 ha third rotation stand; which had been abandoned 15 years ago for natural regeneration to occur. The sampling was done in 24 plots of 20 × 40 m. The sampled area was of 19,200 m2, with inventory made of 100% of the eucalyptus trees. All regeneration trees with a height ≥ 1.30 m and DBH ≥ 5.0 cm were measured, as well as adult individuals with DBH ≥ 5.0 cm; surveyed in two size classes. 1,417 individuals of E. saligna were measured, with a density of 738,02 individuals/ha and a basal area of 22.69 m2/ha. Among 2,763 natural regeneration individuals, 111 species belonged to 66 genera and 34 botanical families. The species represented 43.7% of the tree richness of neighboring native forest fragments. The total estimated density and the basal area were respectively 1,052.6 individuals/ha and 6.4 m2/ha of autochthonous trees with DBH ≥ 5.0 cm (Class 1); while for regeneration there were 3,864.58 individuals/ha, and 2.76 m2/ha of individuals with a height ≥ 1.30 m and DBH < 5.0 cm (Class 2). Shannon diversity (H') was 2.83 and 3.68, respectively, for Classes 1 and 2, and the corrected species richness for a 1000-individual sample (R1000) were 75.6 and 87.29 (Fisher's a index) for the same classes. The majority of the species (34.84%) was typical from the understory of wet tropical forest and had zoochoric fruit dispersal (67.57%). The results indicate that, under these conditions, a eucalyptus forest is able to provide adequate regeneration niches for native vegetation, and may represent a sink habitat for local populations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Questions: We assess gap size and shape distributions, two important descriptors of the forest disturbance regime, by asking: which statistical model best describes gap size distribution; can simple geometric forms adequately describe gap shape; does gap size or shape vary with forest type, gap age or the method used for gap delimitation; and how similar are the studied forests and other tropical and temperate forests? Location: Southeastern Atlantic Forest, Brazil. Methods: Analysing over 150 gaps in two distinct forest types (seasonal and rain forests), a model selection framework was used to select appropriate probability distributions and functions to describe gap size and gap shape. The first was described using univariate probability distributions, whereas the latter was assessed based on the gap area-perimeter relationship. Comparisons of gap size and shape between sites, as well as size and age classes were then made based on the likelihood of models having different assumptions for the values of their parameters. Results: The log-normal distribution was the best descriptor of gap size distribution, independently of the forest type or gap delimitation method. Because gaps became more irregular as they increased in size, all geometric forms (triangle, rectangle and ellipse) were poor descriptors of gap shape. Only when small and large gaps (> 100 or 400m2 depending on the delimitation method) were treated separately did the rectangle and isosceles triangle become accurate predictors of gap shape. Ellipsoidal shapes were poor descriptors. At both sites, gaps were at least 50% longer than they were wide, a finding with important implications for gap microclimate (e.g. light entrance regime) and, consequently, for gap regeneration. Conclusions: In addition to more appropriate descriptions of gap size and shape, the model selection framework used here efficiently provided a means by which to compare the patterns of two different types of forest. With this framework we were able to recommend the log-normal parameters μ and σ for future comparisons of gap size distribution, and to propose possible mechanisms related to random rates of gap expansion and closure. We also showed that gap shape varied highly and that no single geometric form was able to predict the shape of all gaps, the ellipse in particular should no longer be used as a standard gap shape. © 2012 International Association for Vegetation Science.
Resumo:
The consequences of diversity on belowground processes are still poorly known in tropical forests. The distributions of very fine roots (diameter <1 mm) and fine roots (diameter <3 mm) were studied in a randomized block design close to the harvest age of fast-growing plantations. A replacement series was set up in Brazil with mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and a mixture with the same stocking density and 50 % of each species (50A:50E). The total fine root (FR) biomass down to a depth of 2 m was about 27 % higher in 50A:50E than in 100A and 100E. Fine root over-yielding in 50A:50E resulted from a 72 % rise in E. grandis fine root biomass per tree relative to 100E, whereas A. mangium FR biomass per tree was 17 % lower than in 100A. Mixing A. mangium with E. grandis trees led to a drop in A. mangium FR biomass in the upper 50 cm of soil relative to 100A, partially balanced by a rise in deep soil layers. Our results highlight similarities in the effects of directional resources on leaf and FR distributions in the mixture, with A. mangium leaves below the E. grandis canopy and a low density of A. mangium fine roots in the resource-rich soil layers relative to monospecific stands. The vertical segregation of resource-absorbing organs did not lead to niche complementarity expected to increase the total biomass production. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC