998 resultados para Tropical Cyclone Simulation
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.
Resumo:
In order to understand the earthquake nucleation process, we need to understand the effective frictional behavior of faults with complex geometry and fault gouge zones. One important aspect of this is the interaction between the friction law governing the behavior of the fault on the microscopic level and the resulting macroscopic behavior of the fault zone. Numerical simulations offer a possibility to investigate the behavior of faults on many different scales and thus provide a means to gain insight into fault zone dynamics on scales which are not accessible to laboratory experiments. Numerical experiments have been performed to investigate the influence of the geometric configuration of faults with a rate- and state-dependent friction at the particle contacts on the effective frictional behavior of these faults. The numerical experiments are designed to be similar to laboratory experiments by DIETERICH and KILGORE (1994) in which a slide-hold-slide cycle was performed between two blocks of material and the resulting peak friction was plotted vs. holding time. Simulations with a flat fault without a fault gouge have been performed to verify the implementation. These have shown close agreement with comparable laboratory experiments. The simulations performed with a fault containing fault gouge have demonstrated a strong dependence of the critical slip distance D-c on the roughness of the fault surfaces and are in qualitative agreement with laboratory experiments.
Resumo:
Solid earth simulations have recently been developed to address issues such as natural disasters, global environmental destruction and the conservation of natural resources. The simulation of solid earth phenomena involves the analysis of complex structures including strata, faults, and heterogeneous material properties. Simulation of the generation and cycle of earthquakes is particularly important, but such simulations require the analysis of complex fault dynamics. GeoFEM is a parallel finite-element analysis system intended for solid earth field phenomena problems. This paper describes recent development in the GeoFEM project for the simulation of earthquake generation and cycles.
Resumo:
Streptococcus pyogenes (group A streptococcus) strains may express several distinct fibronectin-binding proteins (FBPs) which are considered as major streptococcal adhesins. Of the FBPs, SfbI was shown in vitro to promote internalization of the bacterium into host cells and has been implicated in persistence. In the tropical Northern Territory, where group A streptococcal infection is common, multiple genotypes of the organism were found among isolates from invasive disease cases and no dominant strains were observed. To determine whether any FBPs is associated with invasive disease propensity of S. pyogenes, we have screened streptococcal isolates from bacteraemic and necrotizing fasciitis patients and isolates from uncomplicated infections for genetic endowment of 4 FBPs. No difference was observed in the distribution of sfbII, fbp54 and sfbI between the blood isolates' and isolates from uncomplicated infection. We conclude that the presence of sfbI does not appear to promote invasive diseases, despite its association with persistence. We also show a higher proportion of group A streptococcus strains isolated from invasive disease cases possess prtFII when compared to strains isolated from non-invasive disease cases. We suggest that S. pyogenes may recruit different FBPs for different purposes.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N-2-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6parts per thousand), AM species had mostly intermediate delta(15)N values (average +0.6parts per thousand), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1parts per thousand). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2parts per thousand) and non-mycorrhizal (average +0.8 and +0.3parts per thousand) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N-2 fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4parts per thousand). Soil nitrification and plant NO3- use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO3- using taxa associated with NO3- rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar N-15 natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in N-15, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the N-15-enriched delta(15)N of African ECM species represent an anomaly.
Resumo:
Past studies into the roles of testosterone in birds have focused on species that occur in temperate regions. In such species, plasma testosterone levels are high during the establishment of territories in the spring and are associated with increased aggression. In contrast to most temperate species, tropical birds frequently defend territories year-round, during which time territoriality often occurs in a nonsexual context. The few studies that have been carried out on tropical birds show lower levels of circulating testosterone than occur in their temperate counterparts. In some year-round territorial tropical species, testosterone and aggression are dissociated, while in other species testosterone still plays a role in regulating aggression. This study examined the relationship between aggression and plasma testosterone levels in a year-round territorial, subtropical population of the buff-banded rail with characteristics typical of tropical species. Peak testosterone levels were substantially lower than those found in temperate species. Males displayed a seasonal peak in plasma testosterone level when their partners were most likely to be fertile. At other times, testosterone levels were mostly undetectable, despite year-round territoriality. We found that T levels increased with courtship behavior but showed no relationship with aggression, supporting the hypothesis that dissociation between testosterone and territoriality may be widespread among tropical avian taxa. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
In spite of their wide application in comminution circuits, hydrocyclones have at least one significant disadvantage in that their operation inherently tends to return the fine denser liberated minerals to the grinding mill. This results in unnecessary overgrinding which adds to the milling cost and can adversely affect the efficiency of downstream processes. In an attempt to solve this problem, a three-product cyclone has been developed at the Julius Kruttschnitt Mineral Research Centre (JKMRC) to generate a second overflow in which the fine dense liberated minerals can be selectively concentrated for further treatment. In this paper, the design and operation of the three-product cyclone are described. The influence of the length of the second vortex finder on the performance of a 150-mm unit treating a mixture of magnetite and silica is investigated. Conventional cyclone tests were also conducted under similar conditions. Using the operational performance data of the three-product and conventional cyclones, it is shown that by optimising the length of the second vortex finder, the amount of fine dense mineral particles that reports to the three-product cyclone underflow can be reduced. In addition, the three-product cyclone can be used to generate middlings stream that may be more suitable for flash flotation than the conventional cyclone underflow, or alternatively, could be classified with a microscreen to separate the valuables from the gangue. At the same time, a fines stream having similar properties to those of the conventional overflow can be obtained. Hence, if the middlings stream was used as feed for flash flotation or microscreening, the fines stream could be used in lieu of the conventional overflow without compromising the feed requirements for the conventional flotation circuit. Some of the other potential applications of the new cyclone are described. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
A more efficient classifying cyclone (CC) for fine particle classification has been developed in recent years at the JKMRC. The novel CC, known as the JKCC, has modified profiles of the cyclone body, vortex finder, and spigot when compared to conventional hydrocyclones. The novel design increases the centrifugal force inside the cyclone and mitigates the short circuiting flow that exists in all current cyclones. It also decreases the probability of particle contamination in the place near the cyclone spigot. Consequently the cyclone efficiency is improved while the unit maintains a simple structure. An international patent has been granted for this novel cyclone design. In the first development stage-a feasibility study-a 100 mm JKCC was tested and compared with two 100 min commercial units. Very encouraging results were achieved, indicating good potential for the novel design. In the second development stage-a scale-up stage-the JKCC was scaled up to 200 mm in diameter, and its geometry was optimized through numerous tests. The performance of the JKCC was compared with a 150 nun commercial unit and exhibited sharper separation, finer separation size, and lower flow ratios. The JKCC is now being scaled up into a fill-size (480 mm) hydrocyclone in the third development stage-an industrial study. The 480 mm diameter unit will be tested in an Australian coal preparation plant, and directly compared with a commercial CC operating under the same conditions. Classifying cyclone performance for fine coal could be further improved if the unit is installed in an inclined position. The study using the 200 mm JKCC has revealed that sharpness of separation improved and the flow ratio to underflow was decreased by 43% as the cyclone inclination was varied from the vertical position (0degrees) to the horizontal position (90degrees). The separation size was not affected, although the feed rate was slightly decreased. To ensure self-emptying upon shutdown, it is recommended that the JKCC be installed at an inclination of 75-80degrees. At this angle the cyclone performance is very similar to that at a horizontal position. Similar findings have been derived from the testing of a conventional hydrocyclone. This may be of benefit to operations that require improved performance from their classifying cyclones in terms of sharpness of separation and flow ratio, while tolerating slightly reduced feed rate.
Stability and simulation-based design of steel scaffolding without using the effective length method
Resumo:
For dynamic simulations to be credible, verification of the computer code must be an integral part of the modelling process. This two-part paper describes a novel approach to verification through program testing and debugging. In Part 1, a methodology is presented for detecting and isolating coding errors using back-to-back testing. Residuals are generated by comparing the output of two independent implementations, in response to identical inputs. The key feature of the methodology is that a specially modified observer is created using one of the implementations, so as to impose an error-dependent structure on these residuals. Each error can be associated with a fixed and known subspace, permitting errors to be isolated to specific equations in the code. It is shown that the geometric properties extend to multiple errors in either one of the two implementations. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
In Part 1 of this paper a methodology for back-to-back testing of simulation software was described. Residuals with error-dependent geometric properties were generated. A set of potential coding errors was enumerated, along with a corresponding set of feature matrices, which describe the geometric properties imposed on the residuals by each of the errors. In this part of the paper, an algorithm is developed to isolate the coding errors present by analysing the residuals. A set of errors is isolated when the subspace spanned by their combined feature matrices corresponds to that of the residuals. Individual feature matrices are compared to the residuals and classified as 'definite', 'possible' or 'impossible'. The status of 'possible' errors is resolved using a dynamic subset testing algorithm. To demonstrate and validate the testing methodology presented in Part 1 and the isolation algorithm presented in Part 2, a case study is presented using a model for biological wastewater treatment. Both single and simultaneous errors that are deliberately introduced into the simulation code are correctly detected and isolated. Copyright (C) 2003 John Wiley Sons, Ltd.