935 resultados para Topological Construct
Resumo:
The existence of genuinely non-geometric backgrounds, i.e. ones without geometric dual, is an important question in string theory. In this paper we examine this question from a sigma model perspective. First we construct a particular class of Courant algebroids as protobialgebroids with all types of geometric and non-geometric fluxes. For such structures we apply the mathematical result that any Courant algebroid gives rise to a 3D topological sigma model of the AKSZ type and we discuss the corresponding 2D field theories. It is found that these models are always geometric, even when both 2-form and 2-vector fields are neither vanishing nor inverse of one another. Taking a further step, we suggest an extended class of 3D sigma models, whose world volume is embedded in phase space, which allow for genuinely non-geometric backgrounds. Adopting the doubled formalism such models can be related to double field theory, albeit from a world sheet perspective.
Resumo:
We construct parent Hamiltonians involving only local 2-body interactions for a broad class of projected entangled pair states (PEPS). Making use of perturbation gadget techniques, we define a perturbative Hamiltonian acting on the virtual PEPS space with a finite order low energy effective Hamiltonian that is a gapped, frustration-free parent Hamiltonian for an encoded version of a desired PEPS. For topologically ordered PEPS, the ground space of the low energy effective Hamiltonian is shown to be in the same phase as the desired state to all orders of perturbation theory. An encoded parent Hamiltonian for the double semion string net ground state is explicitly constructed as a concrete example.
Resumo:
Frustrated systems, typically characterized by competing interactions that cannot all be simultaneously satisfied, are ubiquitous in nature and display many rich phenomena and novel physics. Artificial spin ices (ASIs), arrays of lithographically patterned Ising-like single-domain magnetic nanostructures, are highly tunable systems that have proven to be a novel method for studying the effects of frustration and associated properties. The strength and nature of the frustrated interactions between individual magnets are readily tuned by design and the exact microstate of the system can be determined by a variety of characterization techniques. Recently, thermal activation of ASI systems has been demonstrated, introducing the spontaneous reversal of individual magnets and allowing for new explorations of novel phase transitions and phenomena using these systems. In this work, we introduce a new, robust material with favorable magnetic properties for studying thermally active ASI and use it to investigate a variety of ASI geometries. We reproduce previously reported perfect ground-state ordering in the square geometry and present studies of the kagome lattice showing the highest yet degree of ordering observed in this fully frustrated system. We consider theoretical predictions of long-range order in ASI and use both our experimental studies and kinetic Monte Carlo simulations to evaluate these predictions. Next, we introduce controlled topological defects into our square ASI samples and observe a new, extended frustration effect of the system. When we introduce a dislocation into the lattice, we still see large domains of ground-state order, but, in every sample, a domain wall containing higher energy spin arrangements originates from the dislocation, resolving a discontinuity in the ground-state order parameter. Locally, the magnets are unfrustrated, but frustration of the lattice persists due to its topology. We demonstrate the first direct imaging of spin configurations resulting from topological frustration in any system and make predictions on how dislocations could affect properties in numerous materials systems.
Resumo:
We study the relations of shift equivalence and strong shift equivalence for matrices over a ring $\mathcal{R}$, and establish a connection between these relations and algebraic K-theory. We utilize this connection to obtain results in two areas where the shift and strong shift equivalence relations play an important role: the study of finite group extensions of shifts of finite type, and the Generalized Spectral Conjectures of Boyle and Handelman for nonnegative matrices over subrings of the real numbers. We show the refinement of the shift equivalence class of a matrix $A$ over a ring $\mathcal{R}$ by strong shift equivalence classes over the ring is classified by a quotient $NK_{1}(\mathcal{R}) / E(A,\mathcal{R})$ of the algebraic K-group $NK_{1}(\calR)$. We use the K-theory of non-commutative localizations to show that in certain cases the subgroup $E(A,\mathcal{R})$ must vanish, including the case $A$ is invertible over $\mathcal{R}$. We use the K-theory connection to clarify the structure of algebraic invariants for finite group extensions of shifts of finite type. In particular, we give a strong negative answer to a question of Parry, who asked whether the dynamical zeta function determines up to finitely many topological conjugacy classes the extensions by $G$ of a fixed mixing shift of finite type. We apply the K-theory connection to prove the equivalence of a strong and weak form of the Generalized Spectral Conjecture of Boyle and Handelman for primitive matrices over subrings of $\mathbb{R}$. We construct explicit matrices whose class in the algebraic K-group $NK_{1}(\mathcal{R})$ is non-zero for certain rings $\mathcal{R}$ motivated by applications. We study the possible dynamics of the restriction of a homeomorphism of a compact manifold to an isolated zero-dimensional set. We prove that for $n \ge 3$ every compact zero-dimensional system can arise as an isolated invariant set for a homeomorphism of a compact $n$-manifold. In dimension two, we provide obstructions and examples.
Resumo:
Background: increasing numbers of patients are surviving critical illness, but survival may be associated with a constellation of physical and psychological sequelae that can cause on going disability and reduced health-related quality of life. Limited evidence currently exists to guide the optimum structure, timing, and content of rehabilitation programmes. There is a need to both develop and evaluate interventions to support and expedite recovery during the post-ICU discharge period. This paper describes the construct development for a complex rehabilitation intervention intended to promote physical recovery following critical illness. The intervention is currently being evaluated in a randomised trial (ISRCTN09412438; funder Chief Scientists Office, Scotland). Methods: the intervention was developed using the Medical Research Council (MRC) framework for developing complex healthcare interventions. We ensured representation from a wide variety of stakeholders including content experts from multiple specialties, methodologists, and patient representation. The intervention construct was initially based on literature review, local observational and audit work, qualitative studies with ICU survivors, and brainstorming activities. Iterative refinement was aided by the publication of a National Institute for Health and Care Excellence guideline (No. 83), publicly available patient stories (Healthtalkonline), a stakeholder event in collaboration with the James Lind Alliance, and local piloting. Modelling and further work involved a feasibility trial and development of a novel generic rehabilitation assistant (GRA) role. Several rounds of external peer review during successive funding applications also contributed to development. Results: the final construct for the complex intervention involved a dedicated GRA trained to pre-defined competencies across multiple rehabilitation domains (physiotherapy, dietetics, occupational therapy, and speech/language therapy), with specific training in post-critical illness issues. The intervention was from ICU discharge to 3 months post-discharge, including inpatient and post-hospital discharge elements. Clear strategies to provide information to patients/families were included. A detailed taxonomy was developed to define and describe the processes undertaken, and capture them during the trial. The detailed process measure description, together with a range of patient, health service, and economic outcomes were successfully mapped on to the modified CONSORT recommendations for reporting non-pharmacologic trial interventions. Conclusions: the MRC complex intervention framework was an effective guide to developing a novel post-ICU rehabilitation intervention. Combining a clearly defined new healthcare role with a detailed taxonomy of process and activity enabled the intervention to be clearly described for the purpose of trial delivery and reporting. These data will be useful when interpreting the results of the randomised trial, will increase internal and external trial validity, and help others implement the intervention if the intervention proves clinically and cost effective.
Resumo:
The generation of functional, vascularized tissues is a key challenge for the field of tissue engineering. Before clinical implantations of tissue engineered bone constructs can succeed, in vitro fabrication needs to address limitations in large-scale tissue development, including controlled osteogenesis and an inadequate vasculature network to prevent necrosis of large constructs. The tubular perfusion system (TPS) bioreactor is an effective culturing method to augment osteogenic differentiation and maintain viability of human mesenchymal stem cell (hMSC)-seeded scaffolds while they are developed in vitro. To further enhance this process, we developed a novel osteogenic growth factors delivery system for dynamically cultured hMSCs using microparticles encapsulated in three-dimensional alginate scaffolds. In light of this increased differentiation, we characterized the endogenous cytokine distribution throughout the TPS bioreactor. An advantageous effect in the ‘outlet’ portion of the uniaxial growth chamber was discovered due to the system’s downstream circulation and the unique modular aspect of the scaffolds. This unique trait allowed us to carefully tune the differentiation behavior of specific cell populations. We applied the knowledge gained from the growth profile of the TPS bioreactor to culture a high-volume bone composite in a 3D-printed femur mold. This resulted in a tissue engineered bone construct with a volume of 200cm3, a 20-fold increase over previously reported sizes. We demonstrated high viability of the cultured cells throughout the culture period as well as early signs of osteogenic differentiation. Taking one step closer toward a viable implant and minimize tissue necrosis after implantation, we designed a composite construct by coculturing endothelial cells (ECs) and differentiating hMSCs, encouraging prevascularization and anastomosis of the graft with the host vasculature. We discovered the necessity of cell to cell proximity between the two cell types as well as preference for the natural cell binding capabilities of hydrogels like collagen. Notably, the results suggested increased osteogenic and angiogenic potential of the encapsulated cells when dynamically cultured in the TPS bioreactor, suggesting a synergistic effect between coculture and applied shear stress. This work highlights the feasibility of fabricating a high-volume, prevascularized tissue engineered bone construct for the regeneration of a critical size defect.
Resumo:
Since the 1980s there have been three main attempts to ground citizenship upon the principles of duty, obligation and responsibility: conservative, communitarian and Third Way. Each of these are reviewed below. The principal task of this article, though, is to examine the emergence of a fourth attempt which, by relating duty to equality through the principle of reciprocity, represents a synthesis of traditional social democracy with the new politics of obligation. Our focus will be upon The Civic Minimum by Stuart White since this is arguably the most cogent expression of duty-based egalitarianism to have emerged in recent years. Key words: citizenship, equality, reciprocity, Basic Income
Resumo:
To date, adult educational research has had a limited focus on lesbian, gay, bisexual and transgendered (LGBT) adults and the learning processes in which they engage across the life course. Adopting a biographical and life history methodology, this study aimed to critically explore the potentially distinctive nature and impact of how, when and where LGBT adults learn to construct their identities over their lives. In-depth, semi-structured interviews, dialogue and discussion with LGBT individuals and groups provided rich narratives that reflect shifting, diverse and multiple ways of identifying and living as LGBT. Participants engage in learning in unique ways that play a significant role in the construction and expression of such identities, that in turn influence how, when and where learning happens. Framed largely by complex heteronormative forces, learning can have a negative, distortive impact that deeply troubles any balanced, positive sense of being LGBT, leading to self- censoring, alienation and in some cases, hopelessness. However, learning is also more positively experiential, critically reflective, inventive and queer in nature. This can transform how participants understand their sexual identities and the lifewide spaces in which they learn, engendering agency and resilience. Intersectional perspectives reveal learning that participants struggle with, but can reconcile the disjuncture between evolving LGBT and other myriad identities as parents, Christians, teachers, nurses, academics, activists and retirees. The study’s main contributions lie in three areas. A focus on LGBT experience can contribute to the creation of new opportunities to develop intergenerational learning processes. The study also extends the possibilities for greater criticality in older adult education theory, research and practice, based on the continued, rich learning in which participants engage post-work and in later life. Combined with this, there is scope to further explore the nature of ‘life-deep learning’ for other societal groups, brought by combined religious, moral, ideological and social learning that guides action, beliefs, values, and expression of identity. The LGBT adults in this study demonstrate engagement in distinct forms of life-deep learning to navigate social and moral opprobrium. From this they gain hope, self-respect, empathy with others, and deeper self-knowledge.
Resumo:
The class of all locally quasi-convex (lqc) abelian groups contains all locally convex vector spaces (lcs) considered as topological groups. Therefore it is natural to extend classical properties of locally convex spaces to this larger class of abelian topological groups. In the present paper we consider the following well known property of lcs: “A metrizable locally convex space carries its Mackey topology ”. This claim cannot be extended to lqc-groups in the natural way, as we have recently proved with other coauthors (Außenhofer and de la Barrera Mayoral in J Pure Appl Algebra 216(6):1340–1347, 2012; Díaz Nieto and Martín Peinador in Descriptive Topology and Functional Analysis, Springer Proceedings in Mathematics and Statistics, Vol 80 doi:10.1007/978-3-319-05224-3_7, 2014; Dikranjan et al. in Forum Math 26:723–757, 2014). We say that an abelian group G satisfies the Varopoulos paradigm (VP) if any metrizable locally quasi-convex topology on G is the Mackey topology. In the present paper we prove that in any unbounded group there exists a lqc metrizable topology that is not Mackey. This statement (Theorem C) allows us to show that the class of groups satisfying VP coincides with the class of finite exponent groups. Thus, a property of topological nature characterizes an algebraic feature of abelian groups.
Resumo:
We present topological derivative and energy based procedures for the imaging of micro and nano structures using one beam of visible light of a single wavelength. Objects with diameters as small as 10 nm can be located and their position tracked with nanometer precision. Multiple objects dis-tributed either on planes perpendicular to the incidence direction or along axial lines in the incidence direction are distinguishable. More precisely, the shape and size of plane sections perpendicular to the incidence direction can be clearly determined, even for asymmetric and nonconvex scatterers. Axial resolution improves as the size of the objects decreases. Initial reconstructions may proceed by gluing together two-dimensional horizontal slices between axial peaks or by locating objects at three-dimensional peaks of topological energies, depending on the effective wavenumber. Below a threshold size, topological derivative based iterative schemes improve initial predictions of the lo-cation, size, and shape of objects by postprocessing fixed measured data. For larger sizes, tracking the peaks of topological energy fields that average information from additional incident light beams seems to be more effective.
Resumo:
We discover novel topological effects in the one-dimensional Kitaev chain modified by long-range Hamiltonian deformations in the hopping and pairing terms. This class of models display symmetry-protected topological order measured by the Berry/Zak phase of the lower-band eigenvector and the winding number of the Hamiltonians. For exponentially decaying hopping amplitudes, the topological sector can be significantly augmented as the penetration length increases, something experimentally achievable. For power-law decaying superconducting pairings, the massless Majorana modes at the edges get paired together into a massive nonlocal Dirac fermion localized at both edges of the chain: a new topological quasiparticle that we call topological massive Dirac fermion. This topological phase has fractional topological numbers as a consequence of the long-range couplings. Possible applications to current experimental setups and topological quantum computation are also discussed.
Resumo:
Purpose: To construct a cluster model or a gene signature for Stevens-Johnson syndrome (SJS) using pathways analysis in order to identify some potential biomarkers that may be used for early detection of SJS and epidermal necrolysis (TEN) manifestations. Methods: Gene expression profiles of GSE12829 were downloaded from Gene Expression Omnibus database. A total of 193 differentially expressed genes (DEGs) were obtained. We applied these genes to geneMANIA database, to remove ambiguous and duplicated genes, and after that, characterized the gene expression profiles using geneMANIA, DAVID, REACTOME, STRING and GENECODIS which are online software and databases. Results: Out of 193 genes, only 91 were used (after removing the ambiguous and duplicated genes) for topological analysis. It was found by geneMANIA database search that majority of these genes were coexpressed yielding 84.63 % co-expression. It was found that ten genes were in Physical interactions comprising almost 14.33 %. There were < 1 % pathway and genetic interactions with values of 0.97 and 0.06 %, respectively. Final analyses revealed that there are two clusters of gene interactions and 13 genes were shown to be in evident relationship of interaction with regards to hypersensitivity. Conclusion: Analysis of differential gene expressions by topological and database approaches in the current study reveals 2 gene network clusters. These genes are CD3G, CD3E, CD3D, TK1, TOP2A, CDK1, CDKN3, CCNB1, and CCNF. There are 9 key protein interactions in hypersensitivity reactions and may serve as biomarkers for SJS and TEN. Pathways related gene clusters has been identified and a genetic model to predict SJS and TEN early incidence using these biomarker genes has been developed.
Resumo:
The examination of Workplace Aggression as a global construct conceptualization has gained considerable attention over the past few years as organizations work to better understand and address the occurrence and consequences of this challenging construct. The purpose of this dissertation is to build on previous efforts to validate the appropriateness and usefulness of a global conceptualization of the workplace aggression construct. ^ This dissertation has been broken up into two parts: Part 1 utilized a Confirmatory Factor Analysis approach in order to assess the existence of workplace aggression as a global construct; Part 2 utilized a series of correlational analyses to examine the relationship between a selection of commonly experienced individual strain based outcomes and the global construct conceptualization assessed in Part 1. Participants were a diverse sample of 219 working individuals from Amazon’s Mechanical Turk participant pool. ^ Results of Part 1 did not show support for a one-factor global construct conceptualization of the workplace aggression construct. However, support was shown for a higher-order five-factor model of the construct, suggesting that it may be possible to conceptualize workplace aggression as an overarching construct that is made up of separate workplace aggression constructs. Results of Part 2 showed support for the relationships between an existing global construct workplace aggression conceptualization and a series of strain-based outcomes. Utilizing correlational analyses, additional post-hoc analyses showed that individual factors such as emotional intelligence and personality are related to the experience of workplace aggression. Further, utilizing moderated regression analysis, the results demonstrated that individuals experiencing high levels of workplace aggression reported higher job satisfaction when they felt strongly that the aggressive act was highly visible, and similarly, when they felt that there was a clear intent to cause harm. ^ Overall, the findings of this dissertation do support the need for a simplification of its current state of measurement. Future research should continue to examine workplace aggression in an effort to shed additional light on the structure and usefulness of this complex construct.^
Resumo:
Employees maintain a personal view toward their work, which can be referred to as their work orientation. Some employees view their work as their life’s purpose (i.e., calling work orientation) and they tend to be 1) prosocially motivated, 2) derive meaning from work, and 3) feel that their purpose is from beyond the self. The purpose of the current dissertation was to differentiate calling work orientation from other similar workplace constructs, to investigate the most common covariates of calling work orientation, and to empirically test two possible moderators of the relationship between calling work orientation and work-related outcomes of job satisfaction, job performance, and work engagement. Two independent samples were collected for the purpose of testing hypotheses: data were collected from 520 working students and from 520 non-student employees. Participants from the student sample were recruited at Florida International University, and participants from the employee sample were recruited via the Amazon Mechanical Turk website. Participants from the student sample answered demographic questions and responded to self-report measures of job satisfaction, job performance, work engagement, spirituality, meaningful work, prosocial motivation, and work orientation. The procedure was similar for the employee sample, but their survey also included measures of counterproductive work behaviors, organizational citizenship behaviors, conscientiousness, and numerical ability. Additionally, employees were asked whether they would be willing to have a direct supervisor, peer, co-worker, client, or subordinate rate their job performance. Hierarchical regression findings suggest calling work orientation was predictive of overall job performance above and beyond two common predictors of performance, conscientiousness and numerical ability. The results for the covariate analyses provided evidence that prosocial motivation, meaningful work, and spirituality do play a significant role in the development of an employees’ work orientation. Perceived career opportunities moderated the relationship between calling work orientation and job performance for the employee sample. Core self-evaluations moderated the relationship between calling work orientation and job performance, and core self-evaluations moderated the relationship between calling work orientation and work engagement. Collectively, findings from the current study highlight the benefits of examining work orientation in the prediction of workplace outcomes.