954 resultados para Tissue Distribution
Resumo:
The presence and distribution of human immunodeficiency virus (HIV) were examined in the CNS of two children with severe HIV encephalitis and myelitis. Using polymerase chain reaction-mediated DNA amplification and subsequent Southern analysis, proviral HIV gag sequences were identified in brain tissue of both patients. In situ hybridization using antisense oligonucleotide probes revealed abundant HIV gag and env/nef RNAs selectively in areas with histopathological evidence for HIV-induced tissue damage. The spinal cord of one patient exhibited a striking subpial accumulation of HIV RNAs strongly suggestive of a liquorigenic spread of the infection. HIV RNAs were typically associated with cells of the monocyte/macrophage lineage, as shown by a combined immunohistochemical and in situ hybridization procedure. The present study supports the view that the pattern and distribution of HIV-induced brain lesions is largely determined by the extent of focal HIV replication within the CNS.
Resumo:
Aims: To investigate the extent and the circumferential distribution of the neointima tissue developed following an Absorb bioresorbable vascular scaffold (BVS) implantation. Methods and results: Twenty-three patients who were treated with the Absorb BVS and had optical coherence tomographic examination after scaffold implantation, at six-month and at two-year follow-up, were included in the current analysis. The lumen and the scaffold borders were detected and the circumferential thickness of the neointima was measured at one degree intervals. The symmetry of the neointima was defined as: minimum/maximum thickness. The lumen area was decreased at six months compared to baseline but it did not change between six-month and two-year follow-up (baseline: 7.49 [6.13-8.00] mm2, six months: 6.31 (4.75-7.06) mm2, two years: 6.01 [4.67-7.11] mm2, p=0.373). However, the mean neointima thickness (six months: 189 [173-229] μm, two years: 258 [222-283] μm, p<0.0001) and the symmetry index of the neointima (six months: 0.06 [0.02-0.09], two years: 0.27 [0.24-0.36], p<0.0001) were increased at two years. Full circumferential coverage of the vessel wall by neointima tissue was seen in 91% of the studied frames at two years. Conclusions: This study demonstrates that after an Absorb BVS implantation neointima tissue develops that covers almost the whole circumference of the vessel wall. In contrast to the metallic stents, the neointima tissue does not compromise the luminal dimensions. Further research is required to evaluate the neointimal characteristics and assess the potential value of the device in passivating high-risk plaques.
Resumo:
Recently, it has been shown that water fluxes across biological membranes occur not only through the lipid bilayer but also through specialized water-conducting proteins, the so called aquaporins. In the present study, we investigated in young and mature leaves of Brassica napus L. the expression and localization of a vacuolar aquaporin homologous to radish γ-tonoplast intrinsic protein/vacuolar-membrane integral protein of 23 kDa (TIP/VM 23). In-situ hybridization showed that these tonoplast aquaporins are highly expressed not only in developing but also in mature leaves, which export photosynthates. No substantial differences could be observed between different tissues of young and mature leaves. However, independent of the developmental stage, an immunohistochemical approach revealed that the vacuolar membrane of bundle-sheath cells contained more protein cross-reacting with antibodies raised against radish γ-TIP/VM 23 than the mesophyll cells. The lowest labeling was detected in phloem cells. We compared these results with the distribution of plasma-membrane aquaporins cross-reacting with antibodies detecting a domain conserved among members of the plasma-membrane intrinsic protein 1 (PIP1) subfamily. We observed the same picture as for the vacuolar aquaporins. Furthermore, a high density of gold particles labeling proteins of the PIP1 group could be observed in plasmalemmasomes of the vascular parenchyma. Our results indicate that γ-TIP/VM 23 and PIP1 homologous proteins show a similar expression pattern. Based on these results it is tempting to speculate that bundle-sheath cells play an important role in facilitating water fluxes between the apoplastic and symplastic compartments in close proximity to the vascular tissue.
Resumo:
Five permanent cell lines were developed from Xiphophorus maculatus, X. helleri, and their hybrids using three tissue sources, including adults and embryos of different stages. To evaluate cell line gene expression for retention of either tissue-of-origin-specific or ontogenetic stage-specific characters, the activity distribution of 44 enzyme loci was determined in 11 X. maculatus tissues, and the developmental genetics of 17 enzyme loci was charted in X. helleri and in helleri x maculatus hybrids using starch gel electrophoresis. In the process, eight new loci were discovered and characterized for Xiphophorus.^ No Xiphophorus cell line showed retention of tissue-of-origin-specific or ontogenetic stage-specific enzyme gene expressional traits. Instead, gene expression was similar among the cell lines. One enzyme, adenosine deaminase (ADA) was an exception. Two adult-origin cell lines expressed ADA, whereas, three cell lines derived independently from embryos did not. ADA('-) expression of Xiphophorus embryo-derived cell lines may represent retention of an embryonic gene expressional trait. In one cell line (T(,3)) derived from 13 pooled interspecific hybrid (F(,2)) embryos, shifts with time were observed at enzyme loci polymorphic between the two species. This suggested shifts in ratios of cells of different genotypes in the population rather than unstable gene expression in one dominant cell type.^ Verification of this hypothesis was attempted by cloning the culture--seeking clones having different genetic signatures. The large number of loci electrophoretically polymorphic between the two species and whose alleles segregated independently into the 13 progeny from which this culture originated almost guaranteed the presence of different genetic signatures (lineages) in T(,3).^ Seven lineages of cells were found within T(,3), each expressing genotypes at some loci not characteristic of the expression of the culture-as-a-whole, supporting the hypothesis tested. Quantitative studies of ADA expression in the whole culture (ADA('-)) and in clones of these seven lineages suggested the predominance in T(,3) of ADA deficient cell lineages, although moderate to high ADA output clones also occurred. Thus, T(,3) has the potential to shift phenotypes from ADA('-) to ADA('+) by simply changing proportions of its constituent cell types, demonstrating that such shifts can occur in any cell culture containing cells of mixed expressional characteristics.^
Resumo:
Background: The physical characteristic of protons is that they deliver most of their radiation dose to the target volume and deliver no dose to the normal tissue distal to the tumor. Previously, numerous studies have shown unique advantages of proton therapy over intensity-modulated radiation therapy (IMRT) in conforming dose to the tumor and sparing dose to the surrounding normal tissues and the critical structures in many clinical sites. However, proton therapy is known to be more sensitive to treatment uncertainties such as inter- and intra-fractional variations in patient anatomy. To date, no study has clearly demonstrated the effectiveness of proton therapy compared with the conventional IMRT under the consideration of both respiratory motion and tumor shrinkage in non-small cell lung cancer (NSCLC) patients. Purpose: This thesis investigated two questions for establishing a clinically relevant comparison of the two different modalities (IMRT and proton therapy). The first question was whether or not there are any differences in tumor shrinkage between patients randomized to IMRT versus passively scattered proton therapy (PSPT). Tumor shrinkage is considered a standard measure of radiation therapy response that has been widely used to gauge a short-term progression of radiation therapy. The second question was whether or not there are any differences between the planned dose and 5D dose under the influence of inter- and intra-fractional variations in the patient anatomy for both modalities. Methods: A total of 45 patients (25 IMRT patients and 20 PSPT patients) were used to quantify the tumor shrinkage in terms of the change of the primary gross tumor volume (GTVp). All patients were randomized to receive either IMRT or PSPT for NSCLC. Treatment planning goals were identical for both groups. All patients received 5 to 8 weekly repeated 4-dimensional computed tomography (4DCT) scans during the course of radiation treatments. The original GTVp contours were propagated to T50 of weekly 4DCT images using deformable image registration and their absolute volumes were measured. Statistical analysis was performed to compare the distribution of tumor shrinkage between the two population groups. In order to investigate the difference between the planned dose and the 5D dose with consideration of both breathing motion and anatomical change, we re-calculated new dose distributions at every phase of the breathing cycle for all available weekly 4DCT data sets which resulted 50 to 80 individual dose calculations for each of the 7 patients presented in this thesis. The newly calculated dose distributions were then deformed and accumulated to T50 of the planning 4DCT for comparison with the planned dose distribution. Results: At the end of the treatment, both IMRT and PSPT groups showed mean tumor volume reductions of 23.6% ( 19.2%) and 20.9% ( 17.0 %) respectively. Moreover, the mean difference in tumor shrinkage between two groups is 3% along with the corresponding 95% confidence interval, [-8%, 14%]. The rate of tumor shrinkage was highly correlated with the initial tumor volume size. For the planning dose and 5D dose comparison study, all 7 patients showed a mean difference of 1 % in terms of target coverage for both IMRT and PSPT treatment plans. Conclusions: The results of the tumor shrinkage investigation showed no statistically significant difference in tumor shrinkage between the IMRT and PSPT patients, and the tumor shrinkage between the two modalities is similar based on the 95% confidence interval. From the pilot study of comparing the planned dose with the 5D dose, we found the difference to be only 1%. Overall impression of the two modalities in terms of treatment response as measured by the tumor shrinkage and 5D dose under the influence of anatomical change that were designed under the same protocol (i.e. randomized trial) showed similar result.
Resumo:
Phytoliths (siliceous plant microfossils) have been recovered from Cenozoic sediments (c. 34 to 17 Ma) in the CRP-2/2A and CRP-3 drillholes cored off Cape Roberts, Victoria Land Basin, Antarctica. The phytolith assemblages are sparse, but well-preserved and dominated by spherical forms similar to those of modern trees or shrubs. Rare phytoliths comparable to modern grass forms are also present. However, due to the paucity of phytolith data, any interpretations made are necessarily tentative. The assemblages of CRP-2/2A and the upper c. 250 m of CRP-3 are interpreted as representing a predominantly woody vegetation, including Nothofagus and Libocedrus with local areas of grass in the more exposed locations. A cool climate is interpreted to have prevailed throughout both cores. However, beneath c. 250 metres below sea floor in CRP-3, the dominant woody vegetation is supplemented by pockets of Palmae, ?Proteaceae and 'warm' climate grasses. This association represents vegetation growth in sheltered, moist sites - possibly north-facing mid-slopes or the coastal fringe. It may also represent remnant vegetation that grew in moist, temperate conditions during the Middle to Late Eocene, previously interpreted from the Southern McMurdo Sound erratics and lower part of the CIROS-1 drillhole. The phytolith analysis compares well to the terrestrial palynomorph record from both cores and provides additional independent taxonomic and climatic interpretations.
Resumo:
Proton therapy is a high precision technique in cancer radiation therapy which allows irradiating the tumor with minimal damage to the surrounding healthy tissues. Pencil beam scanning is the most advanced dose distribution technique and it is based on a variable energy beam of a few millimeters FWHM which is moved to cover the target volume. Due to spurious effects of the accelerator, of dose distribution system and to the unavoidable scattering inside the patient's body, the pencil beam is surrounded by a halo that produces a peripheral dose. To assess this issue, nuclear emulsion films interleaved with tissue equivalent material were used for the first time to characterize the beam in the halo region and to experimentally evaluate the corresponding dose. The high-precision tracking performance of the emulsion films allowed studying the angular distribution of the protons in the halo. Measurements with this technique were performed on the clinical beam of the Gantry1 at the Paul Scherrer Institute. Proton tracks were identified in the emulsion films and the track density was studied at several depths. The corresponding dose was assessed by Monte Carlo simulations and the dose profile was obtained as a function of the distance from the center of the beam spot.
Resumo:
Carbon distribution in the stem of 2-year-old cork oak plants was studied by 14CO2 pulse labeling in late spring in order to trace the allocation of photoassimilates to tissue and biochemical stem components of cork oak. The fate of 14C photoassimilated carbon was followed during two periods: the first 72 h (short-term study) and the first 52 weeks (long-term study) after the 14CO2 photosynthetic assimilation. The results showed that 14C allocation to stem tissues was dependent on the time passed since photoassimilation and on the season of the year. In the first 3 h all 14C was found in the polar extractives. After 3 h, it started to be allocated to other stem fractions. In 1 day, 14C was allocated mostly to vascular cambium and, to a lesser extent, to primary phloem; no presence of 14C was recorded for the periderm. However, translocation of 14C to phellem was observed from 1 week after 14CO2 pulse labeling. The phellogen was not completely active in its entire circumference at labeling, unlike the vascular cambium; this was the tissue that accumulated most photoassimilated 14C at the earliest sampling. The fraction of leaf-assimilated 14C that was used by the stem peaked at 57% 1 week after 14CO2 plant exposure. The time lag between C photoassimilation and suberin accumulation was ∼8 h, but the most active period for suberin accumulation was between 3 and 7 days. Suberin, which represented only 1.77% of the stem weight, acted as a highly effective sink for the carbon photoassimilated in late spring since suberin specific radioactivity was much higher than for any other stem component as early as only 1 week after 14C plant labeling. This trend was maintained throughout the whole experiment. The examination of microautoradiographs taken over 1 year provided a new method for quantifying xylem growth. Using this approach it was found that there was more secondary xylem growth in late spring than in other times of the year, because the calculated average cell division time was much shorter.
Resumo:
The biggest problem when analyzing the brain is that its synaptic connections are extremely complex. Generally, the billions of neurons making up the brain exchange information through two types of highly specialized structures: chemical synapses (the vast majority) and so-called gap junctions (a substrate of one class of electrical synapse). Here we are interested in exploring the three-dimensional spatial distribution of chemical synapses in the cerebral cortex. Recent research has showed that the three-dimensional spatial distribution of synapses in layer III of the neocortex can be modeled by a random sequential adsorption (RSA) point process, i.e., synapses are distributed in space almost randomly, with the only constraint that they cannot overlap. In this study we hypothesize that RSA processes can also explain the distribution of synapses in all cortical layers. We also investigate whether there are differences in both the synaptic density and spatial distribution of synapses between layers. Using combined focused ion beam milling and scanning electron microscopy (FIB/SEM), we obtained three-dimensional samples from the six layers of the rat somatosensory cortex and identified and reconstructed the synaptic junctions. A total volume of tissue of approximately 4500μm3 and around 4000 synapses from three different animals were analyzed. Different samples, layers and/or animals were aggregated and compared using RSA replicated spatial point processes. The results showed no significant differences in the synaptic distribution across the different rats used in the study. We found that RSA processes described the spatial distribution of synapses in all samples of each layer. We also found that the synaptic distribution in layers II to VI conforms to a common underlying RSA process with different densities per layer. Interestingly, the results showed that synapses in layer I had a slightly different spatial distribution from the other layers.
Resumo:
FUNDING This work was supported by the Biotechnology and Biological Sciences Research Council [BB/I003746/1 to S.H., BB/M001695/1 to S.H and Y.N]
Resumo:
What determines the nuclear organization within a cell and whether this organization itself can impose cellular function within a tissue remains unknown. To explore the relationship between nuclear organization and tissue architecture and function, we used a model of human mammary epithelial cell acinar morphogenesis. When cultured within a reconstituted basement membrane (rBM), HMT-3522 cells form polarized and growth-arrested tissue-like acini with a central lumen and deposit an endogenous BM. We show that rBM-induced morphogenesis is accompanied by relocalization of the nuclear matrix proteins NuMA, splicing factor SRm160, and cell cycle regulator Rb. These proteins had distinct distribution patterns specific for proliferation, growth arrest, and acini formation, whereas the distribution of the nuclear lamina protein, lamin B, remained unchanged. NuMA relocalized to foci, which coalesced into larger assemblies as morphogenesis progressed. Perturbation of histone acetylation in the acini by trichostatin A treatment altered chromatin structure, disrupted NuMA foci, and induced cell proliferation. Moreover, treatment of transiently permeabilized acini with a NuMA antibody led to the disruption of NuMA foci, alteration of histone acetylation, activation of metalloproteases, and breakdown of the endogenous BM. These results experimentally demonstrate a dynamic interaction between the extracellular matrix, nuclear organization, and tissue phenotype. They further show that rather than passively reflecting changes in gene expression, nuclear organization itself can modulate the cellular and tissue phenotype.