934 resultados para Tidal currents.
Resumo:
Field testing studies are required for tidal turbine device developers to determine the performance of their turbines in tidal flows. Full-scale testing of the SCHOTTEL tidal turbine has been conducted at Queen’s University Belfast’s tidal site at Strangford Lough, NI. The device was mounted on a floating barge. Testing was conducted over 48 days, for 288 h, during flood tides in daylight hours. Several instruments were deployed, resulting in an expansive data set. The performance results from this data set are presented here. The device, rated to 50 kW at 2.75 m/s was tested in flows up to 2.5 m/s, producing up to 19 kW, when time-averaged. The thrust on the turbine reached 17 kN in the maximum flow. The maximum system efficiency of the turbine in these flows reached 35%. The test campaign was very successful and further tests may be conducted at higher flow speeds in a similar tidal environment.
Resumo:
A new method is presented for transmission loss allocation based on the separation of transmission loss caused by load and the loss due to circulating currents between generators. The theoretical basis for and derivation of the loss formulae are presented using simple systems. The concept is then extended to a general power system using the Ybus model. Details of the application of the proposed method to a typical power system are presented along with results from the IEEE 30 bus test system. The results from both the small system and the standard IEEE test system demonstrate the validity of the proposed method.
T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra
Resumo:
The purpose of the present study was to characterise Ca2+ currents in smooth muscle cells isolated from biopsy samples taken from the proximal urethra of patients undergoing surgery for bladder or prostate cancer. Cells were studied at 37 degreesC using the amphotericin B perforated-patch configuration of the patch-clamp technique. Currents were recorded using Cs+-rich pipette solutions to block K+ currents. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents, were present in these cells. When steady-state inactivation curves for the L current were fitted with a Boltzmann equation, this yielded a V-1/2 of -45 +/- 5 mV. In contrast, the T current inactivated with a V-1/2 of -80 +/- 3 mV. The L currents were reduced in a concentration-dependent manner by nifedipine (ED50 = 159 +/- 54 nm) and Ni2+ (ED50 = 65 +/- 16 muM) but were enhanced when external Ca2+ was substituted with Ba2+. The T current was little affected by TTX, reduction in external Na+, application of nifedipine at concentrations below 300 nm or substitution of external Ca2+ with Ba2+, but was reduced by Ni2+ with an ED50 of 6 +/- 1 mum. When cells were stepped from -100 to -30 mV in Ca2+-free conditions, small inward currents could be detected. These were enhanced 40-fold in divalent-cation-free solution and blocked in a concentration-dependent manner by Mg2+ with an ED50 of 32 +/- 16 mum. These data support the idea that human urethral myocytes possess currents with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents.
Resumo:
Research over the past two decades on the Holocene sediments from the tide dominated west side of the lower Ganges delta has focussed on constraining the sedimentary environment through grain size distributions (GSD). GSD has traditionally been assessed through the use of probability density function (PDF) methods (e.g. log-normal, log skew-Laplace functions), but these approaches do not acknowledge the compositional nature of the data, which may compromise outcomes in lithofacies interpretations. The use of PDF approaches in GSD analysis poses a series of challenges for the development of lithofacies models, such as equifinal distribution coefficients and obscuring the empirical data variability. In this study a methodological framework for characterising GSD is presented through compositional data analysis (CODA) plus a multivariate statistical framework. This provides a statistically robust analysis of the fine tidal estuary sediments from the West Bengal Sundarbans, relative to alternative PDF approaches.
Resumo:
Queen's University Belfast and Wave Barrier Ltd have developed a tidal testing platform to test hydrokinetic turbines at medium scale. Multiple turbines can be pushed through still water conditions, in steady-state pushing tests. Experiments were conducted to evaluate the interactions between two identical, mono-strut, horizontal axis tidal turbines (HATTs) of 1.5 m diameter (D) rotor. Their relative performance when located individually, in-plane and in-line are investigated. The data shows a high consistency in the power curves at different flow speeds, which indicates high repeatability in this Reynolds range. For an individual turbine, there is no performance difference when the rotor is mounted either upstream or downstream of the supporting structure. When placed in-plane, the turbines have no adverse effect on one another. When spaced in-line with 2D separation, there is a 63% reduction in the performance of the downstream turbine. At 6D downstream this performance reduction is still 59%, indicating some wake recovery between 2D and 6D, though the influence from the upstream rotor persists to at least 6D downstream of the first device. In contrast the performance of the downstream turbine when placed at 1.5D offset of the upstream device at 6D downstream is approximately recovered to the individual turbine performance.
Resumo:
Recent research has shown that higher ambient turbulence leads to better wake recovery, so turbines could be installed in closer proximity in real tidal flows than might be assumed from typical towing tank tests that do not take into account turbulent inflow conditions. The standard tools to assess flow velocities in field conditions are Doppler based sonar devices, such as Acoustic Doppler Profilers (ADPs) or Acoustic Doppler Velocimeters (ADVs). The use of these devices poses some challenges when assessing the wake of a tidal turbine. While ADPs allow the three-dimensional measurement of a velocity profile over a distance, the data is calculated as a mean of three diverging beams and with low temporal resolution. ADVs can measure with higher sampling frequency but only at a single point in the flow. During the MaRINET testing of the SCHOTTELSIT turbine at the QUB tidal test site in Portaferry, Northern Ireland, ADP and ADV measurements were successfully tested.Two methods were employed for measuring the wake: firstly, with a rigidly mounted ADP and secondly, with a submerged ADV which was streamed behind the turbine. This paper presents the experimental set-up and results and discusses limitations and challenges of the two methods used.
Resumo:
Like any new technology, tidal power converters are being assessed for potential environmental impacts. Similar to wind power, where noise emissions have led to some regulations and limitations on consented installation sites, noise emissions of these new tidal devices attract considerable attention, especially due to the possible interaction with the marine fauna. However, the effect of turbine noise cannot be assessed as a stand-alone issue, but must be investigated in the context of the natural background noise in high flow environments. Noise measurements are also believed to be a useful tool for monitoring the operating conditions and health of equipment. While underwater noise measurements are not trivial to perform, this non-intrusive mon- itoring method could prove to be very cost effective. This paper presents sound measurements performed on the SCHOTTEL Instream Turbine as part of the MaRINET testing campaign at the QUB tidal test site in Portaferry during the summer of 2014. This paper demonstrates a comparison of the turbine noise emissions with the normal background noise at the test site and presents possible applications as a monitoring system.
Resumo:
We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by Galaxy Evolution Explorer with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early type galaxy at redshift z = 0.4046 that exhibits no evidence for star formation or active galactic nucleus activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only 0.002 M, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the Very Large Array over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.
Resumo:
The flare of radiation from the tidal disruption and accretion of a star can be used as a marker for supermassive black holes that otherwise lie dormant and undetected in the centres of distant galaxies. Previous candidate flares have had declining light curves in good agreement with expectations, but with poor constraints on the time of disruption and the type of star disrupted, because the rising emission was not observed. Recently, two `relativistic' candidate tidal disruption events were discovered, each of whose extreme X-ray luminosity and synchrotron radio emission were interpreted as the onset of emission from a relativistic jet. Here we report a luminous ultraviolet-optical flare from the nuclear region of an inactive galaxy at a redshift of 0.1696. The observed continuum is cooler than expected for a simple accreting debris disk, but the well-sampled rise and decay of the light curve follow the predicted mass accretion rate and can be modelled to determine the time of disruption to an accuracy of two days. The black hole has a mass of about two million solar masses, modulo a factor dependent on the mass and radius of the star disrupted. On the basis of the spectroscopic signature of ionized helium from the unbound debris, we determine that the disrupted star was a helium-rich stellar core.
Resumo:
Membrane currents were recorded under voltage clamp from root hairs of Arabidopsis thaliana L. using the two-electrode method. Concurrent measurements of membrane voltage distal to the point of current injection were also carried out to assess the extent of current dissipation along the root hair axis. Estimates of the characteristic cable length, λ, showed this parameter to be a function both of membrane voltage and of substrate concentration for transport. The mean value for λ at 0 mV was 103 ± 20 μm (n=17), but ranged by as much as 6-fold in any one cell for membrane voltages from -300 to +40 mV and was affected by 0.25 to 3-fold at any one voltage on raising [K+]0 from 0.1 to 10 mol m-3. Current dissipation along the length of the cells lead to serious distortions of the current-voltage [I-V) characteristic, including consistent underestimates of membrane current as well as a general linearization of the I-V curve and a masking of conductance changes in the presence of transported substrates. In some experiments, microelectrodes were also placed in neighbouring epidermal cells to record the extent of intercellular coupling. Even with current-passing microelectrodes placed at the base of root hairs, coupling was ≤5% (voltage deflection of the epidermal cell ≤5% that recorded at the site of current injection), indicating an appreciable resistance to current passage between cells. These results demonstrate the feasibility of using root hairs as a 'single-cell model' in electrophysiological analyses of transport across the higher-plant plasma membrane; they also confirmed the need to correct for the cable properties of these cells on a cell-by-cell basis. © 1994 Oxford University Press.