915 resultados para Three-component Magma Mixing
Resumo:
Computational analysis software is now widely accepted as a key industrial tool for plant design and process analysis. This is due in part to increased accuracy in the models, larger and faster computer systems and better graphical interfaces that allow easy use of the technology by engineers. The use of computational modelling to test new ideas and analyse current processes helps to take the guesswork out of industrial process design and offers attractive cost savings. An overview of computer-based modelling techniques as applied to the materials processing industry is presented and examples of their application are provided in the contexts of the mixing and refining of lead bullion and the manufacture of lead ingots.
Resumo:
Field-collected specimens of three species of Laminaria and three species of subtidal red algae (Delesseria sanguinea, Plocamium cartilagineum and Phyllophora pseudoceranoides) were exposed to natural summer sunlight on Helgoland (southern North Sea) for up to 4 h at 15 °C. Dark-adapted variable fluorescence (Fv : Fm) was measured immediately after these treatments, and following 6, 24 and 48 h of recovery in moderate irradiances of white light. The response of plants to the full spectrum of natural sunlight was compared with that to PAR alone, UV-A + visible, UV-A + UV-B, or UV-A alone. The Fv : Fm values of all species were reduced to minimal values after 4 h in all of these treatments, but those of the more resistant species (Laminaria spp. and P. pseudoceranoides) were higher after shorter exposures to UV radiation alone than to PAR with or without UV. The recovery of Fv : Fm in all species was also more rapid in the two treatments that contained UV radiation alone than in those that included PAR. These results suggest that it is the high irradiances of PAR in natural sunlight which are responsible for the photoinhibition of photosynthesis of subtidal seaweeds and that the current ambient irradiances of UV radiation (either UV-B or UV-A) in northern temperate latitudes would not contribute significantly to this photoinhibition.
Resumo:
Coloured effluents from textile industries are a problem in many rivers and waterways. Prediction of adsorption capacities of dyes by adsorbents is important in design considerations. The sorption of three basic dyes, namely Basic Blue 3, Basic Yellow 21 and Basic Red 22, onto peat is reported. Equilibrium sorption isotherms have been measured for the three single component systems. Equilibrium was achieved after twenty-one days. The experimental isotherm data were analysed using Langmuir, Freundlich, Redlich-Peterson, Temkin and Toth isotherm equations. A detailed error analysis has been undertaken to investigate the effect of using different error criteria for the determination of the single component isotherm parameters and hence obtain the best isotherm and isotherm parameters which describe the adsorption process. The linear transform model provided the highest R2 regression coefficient with the Redlich-Peterson model. The Redlich-Peterson model also yielded the best fit to experimental data for all three dyes using the non-linear error functions. An extended Langmuir model has been used to predict the isotherm data for the binary systems using the single component data. The correlation between theoretical and experimental data had only limited success due to competitive and interactive effects between the dyes and the dye-surface interactions.
Resumo:
Alfven wave phase mixing is an extensively studied mechanism for dissipating wave energy in an inhomogeneous medium. It is common in the vast majority of phase mixing papers to assume that even though short scale lengths and steep gradients develop as a result of phase mixing, nonlinear wave coupling does not occur. However, weakly nonlinear studies have shown that phase mixing generates magnetoacoustic modes. Numerical results are presented which show the nonlinear generation of magnetosonic waves by Alfven wave phase mixing. The efficiency of the effect is determined by the wave amplitude, the frequency of the Alfven waves and the gradient in the background Alfven speed. Weakly nonlinear theory has shown that the amplitude of the fast magnetosonic wave grows linearly in time. The simulations presented in this paper extend this result to later times and show saturation of the fast magnetosonic component at amplitudes much lower than that of the Alfven wave. For the case when Alfven waves are driven at the boundary, simulating photospheric footpoint motion, a clear modulation of the saturated amplitude is observed. All the results in this paper are for a low amplitude (less than or equal to 0.1), single frequency Alfven wave and a uniform background magnetic field in a two dimensional domain. For this simplified geometry, and with a monochromatic driver, we concluded that the nonlinear generation of fast modes has little effect on classical phase mixing.
Resumo:
This paper reports the results of models of dark cloud chemistry incorporating a depth dependent density distribution with diffusive mixing and adsorption onto grains. The model is based on the approach taken by Xie et al. (1995), with the addition of grain accretion effects. Without diffusion, the central regions of the cloud freeze out in less than 10(7) years. Freeze-out time is dependent on density, so the diffuse outer region of the cloud remains abundant in gas for about an order of magnitude longer. We find that fairly small amounts of diffusive mixing can delay freeze-out at the centre of the model cloud for a time up to an order of magnitude greater than without diffusion, due to material diffusing inward from the edges of the cloud. The gas-phase lifetime of the cloud core can thus be increased by up to an order of magnitude or more by this process. We have run three different grain models with various diffusion coefficients to investigate the effects of changing the sticking parameters.
Resumo:
The ionic liquid (2-hydroxyethylammonium)trimethylammonium) bis(trifluoromethylsulfonyl)imide (choline bistriflimide) was obtained as a supercooled liquid at room temperature (melting point = 30 degrees C). Crystals of choline bistriflimide suitable for structure determination were grown from the melt in situ on the X-ray diffractometer. The choline cation adopts a folded conformation, whereas the bistriflimide anion exhibits a transoid conformation. The choline cation and the bistriflimide anion are held together by hydrogen bonds between the hydroxyl proton and a sulfonyl oxygen atom. This hydrogen bonding is of importance for the temperature-dependent solubility proper-ties of the ionic liquid. Choline bistriflimide is not miscible with water at room temperature, but forms one phase with water at temperatures above 72 degrees C (equals upper critical solution temperature). H-1 NMR studies show that the hydrogen bonds between the choline cation and the bistriflimide anion are substantially weakened above this temperature. The thermophysical properties of water-choline bistriflimide binary mixtures were furthermore studied by a photopyroelectric technique and by adiabatic scanning calorimetry (ASC). By photothermal analysis, besides highly accurate values for the thermal conductivity and effusivity of choline bistriflimide at 30 degrees C, the detailed temperature dependence of both the thermal conductivity and effusivity of the upper and lower part of a critical water-choline bistriflimide mixture in the neighborhood of the mixing-demixing phase transition could be determined with high resolution and accuracy. Together with high resolution ASC data for the heat capacity, experimental values were obtained for the critical exponents alpha and beta, and for the critical amplitude ratio G(+)/G(-). These three values were found to be consistent with theoretical expectations for a three dimensional Ising-type of critical behavior of binary liquid mixtures.
Resumo:
Mitochondrial complex I (NADH: ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide: oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.
Resumo:
Simultaneous optical absorption and laser-induced fluorescence measurements have been used to map the three-dimensional number densities of ground-state ions and neutrals within a low-temperature KrF laser-produced magnesium plasma expanding into vacuum. Data is reported for the symmetry plane of the plasma, which includes the laser interaction point at a delay of 1 μs after the ∼30 ns KrF laser ablation pulse and for a laser fluence of 2 J cm−2 on target. The number density distributions of ion and neutral species within this plane indicate that two distinct regions exist within the plume; one is a fast component containing ions and neutrals at maximum densities of ∼3×1013 cm−3 and ∼4×1012 cm−3, respectively and the second is a high-density region containing slow neutral species, at densities up to ∼1×1015 cm−3.
Resumo:
Mode-mixing of coherent excitations of a trapped Bose-Einstein condensate is modeled using the Bogoliubov approximation. Calculations are presented for second-harmonic generation between the two lowest-lying even-parity m=0 modes in an oblate spheroidal trap. Hybridization of the modes of the breather (l=0) and surface (l=4) states leads to the formation of a Bogoliubov dark state near phase-matching resonance so that a single mode is coherently populated. Efficient harmonic generation requires a strong coupling rate, sharply-defined and well-separated frequency spectrum, and good phase matching. We find that in all three respects the quantal results are significantly different from hydrodynamic predictions. Typically the second-harmonic conversion rate is half that given by an equivalent hydrodynamic estimate.
Resumo:
A genetic screen was performed to isolate mutants showing increased arsenic tolerance using an Arabidopsis thaliana population of activation tagged lines. The most arsenic-resistant mutant shows increased arsenate and arsenite tolerance. Genetic analyses of the mutant indicate that the mutant contains two loci that contribute to arsenic tolerance, designated ars4 and ars5. The ars4ars5 double mutant contains a single T-DNA insertion, ars4, which co-segregates with arsenic tolerance and is inserted in the Phytochrome A (PHYA) gene, strongly reducing the expression of PHYA. When grown under far-red light conditions ars4ars5 shows the same elongated hypocotyl phenotype as the previously described strong phyA-211 allele. Three independent phyA alleles, ars4, phyA-211 and a new T-DNA insertion allele (phyA-t) show increased tolerance to arsenate, although to a lesser degree than the ars4ars5 double mutant. Analyses of the ars5 single mutant show that ars5 exhibits stronger arsenic tolerance than ars4, and that ars5 is not linked to ars4. Arsenic tolerance assays with phyB-9 and phot1/phot2 mutants show that these photoreceptor mutants do not exhibit phyA-like arsenic tolerance. Fluorescence HPLC analyses show that elevated levels of phytochelatins were not detected in ars4, ars5 or ars4ars5, however increases in the thiols cysteine, gamma-glutamylcysteine and glutathione were observed. Compared with wild type, the total thiol levels in ars4, ars5 and ars4ars5 mutants were increased up to 80% with combined buthionine sulfoximine and arsenic treatments, suggesting the enhancement of mechanisms that mediate thiol synthesis in the mutants. The presented findings show that PHYA negatively regulates a pathway conferring arsenic tolerance, and that an enhanced thiol synthesis mechanism contributes to the arsenic tolerance of ars4ars5.
Resumo:
We outline our techniques to characterise photospheric granulation as an astrophysical noise source. A four component parameterisation of granulation is developed that can be used to reconstruct stellar line asymmetries and radial velocity shifts due to photospheric convective motions. The four components are made up of absorption line profiles calculated for granules, magnetic intergranular lanes, non-magnetic intergranular lanes, and magnetic bright points at disc centre. These components are constructed by averaging Fe I $6302 \mathrm{\AA}$ magnetically sensitive absorption line profiles output from detailed radiative transport calculations of the solar photosphere. Each of the four categories adopted are based on magnetic field and continuum intensity limits determined from examining three-dimensional magnetohydrodynamic simulations with an average magnetic flux of $200 \mathrm{G}$. Using these four component line profiles we accurately reconstruct granulation profiles, produced from modelling 12 x 12 Mm$^2$ areas on the solar surface, to within $\sim \pm$ 20 cm s$^{-1}$ on a $\sim$ 100 m s$^{-1}$ granulation signal. We have also successfully reconstructed granulation profiles from a $50 \mathrm{G}$ simulation using the parameterised line profiles from the $200 \mathrm{G}$ average magnetic field simulation. This test demonstrates applicability of the characterisation to a range of magnetic stellar activity levels.
Three dimensional morphology and compressive behaviour of sintered biodegradable composite scaffolds
Resumo:
Porous poly-L-lactide acid (PLA) scaffolds are prepared using polymer sintering and porogen leaching method. Different weight fractions of the Hydroxyapatite (HA) are added to the PLA to control the acidity and degradation rate. The three dimensional morphology and surface porosity are tested using micro CT, optical microscopy and scanning electron microscopy (SEM). Results indicate that the surface porosity does not change by addition of HA. The micro Ct examinations show slight decrease in the pore size and increase in wall thickness accompanied with reduced anisotropy for the scaffolds containing HA. SEM micrographs show detectable interconnected pores for the scaffold with pure PLA. Addition of the HA results in agglomeration of the HA which blocks some of the pores. Compression tests of the scaffold identify three stages in the stress-strain curve. The addition of HA adversely affects the modulus of the scaffold at the first stage, but this was reversed for the second and third stages of the compression. The results of these tests are compared with the cellular material model. The manufactured scaffold have acceptable properties for a scaffold, however improvement to the mixing of the phases of PLA and HA is required to achieve better integrity of the composite scaffolds.
Resumo:
Tofua volcano is situated midway along the Tonga oceanic arc and has undergone two phases of ignimbrite-forming activity. The eruptive products are almost entirely basaltic andesites (52 center dot 5-57 wt % SiO2) with the exception of a volumetrically minor pre-caldera dacite. The suite displays a strong tholeiitic trend with K2O <1 wt %. Phenocryst assemblages typically comprise plagioclase + clinopyroxene +/- orthopyroxene with microlites of Ti-magnetite. Olivine (Fo(83-88)) is rare and believed to be dominantly antecrystic. An increase in the extent and frequency of reverse zoning in phenocrysts, sieve-textured plagioclase and the occurrence of antecrystic phases in post-caldera lavas record a shift to dynamic conditions, allowing the interaction of magma batches that were previously distinct. Pyroxene thermobarometry suggests crystallization at 950-1200 degrees C and 0 center dot 8-1 center dot 8 kbar. Volatile measurements of glassy melt inclusions indicate a maximum H2O content of 4 center dot 16 wt % H2O, and CO2-H2O saturation curves indicate that crystallization occurred at two levels, at depths of 4-5 center dot 5 km and 1 center dot 5-2 center dot 5 km. Major and trace element models suggest that the compositions of the majority of the samples represent a differentiation trend whereby the dacite was produced by 65% fractional crystallization of the most primitive basaltic andesite. Trace element models suggest that the sub-arc mantle source is the residuum of depleted Indian mid-ocean ridge basalt mantle (IDMM-1% melt), whereas radiogenic isotope data imply addition of 0 center dot 2% average Tongan sediment melt and a fluid component derived from the subducted altered Pacific oceanic crust. A horizontal array on the U-Th equiline diagram and Ra excesses of up to 500% suggest fluid addition to the mantle wedge within the last few thousand years. Time-integrated (Ra-226/Th-230) vs Sr/Th and Ba/Th fractionation models imply differentiation timescales of up to 4500 years for the dacitic magma compositions at Tofua.
Resumo:
Fonualei is unusual amongst subaerial volcanoes in the Tonga arc because it has erupted dacitic vesicular lavas, tuffs and phreomagmatic deposits for the last 165 years. The total volume of dacite may approach 5 km(3) and overlies basal basaltic andesite and andesite lavas that are constrained to be less than a few millennia in age. All of the products are crystal-poor and formed from relatively low-viscosity magmas inferred to have had temperatures of 1100-1000 degrees C, 2-4 wt % H2O and oxygen fugacities 1-2 log units above the quartz-fayalite-magnetite buffer. Major and trace element data, along with Sr-Nd-Pb and U-Th-Ra isotope data, are used to assess competing models for the origin of the dacites. Positive correlations between Sc and Zr and Sr rule out evolution of the within-dacite compositional array by closed-system crystal fractionation of a single magma batch. An origin by partial melting of lower crustal amphibolites cannot reproduce these data trends or, arguably, any of the dacites either. Instead, we develop a model in which the dacites reflect mixing between two dacitic magmas, each the product of fractional crystallization of basaltic andesite magmas formed by different degrees of partial melting. Mixing was efficient because the two magmas had similar temperatures and viscosities. This is inferred to have occurred at shallow (2-6 km) depths beneath the volcano. U-Th-Ra disequilibria in the basaltic andesite and andesite indicate that the parental magmas had fluids added to their mantle source regions less than 8 kyr ago and that fractionation to the dacitic compositions took less than a few millennia. The 165 year eruption period for the dacites implies that mixing occurred on a similar timescale, possibly during ascent in conduits. The composition of the dacites renders them unsuitable candidates as contributors to average continental crust.
Resumo:
Three new microtephras are reported from a number of lake sites from the Inner Hebrides and Scottish mainland. One occurs stratigrapically in the middle of Greenland Interstadial 1 (GI-1) and has been named the Penifiler Tephra. It is rhyolitic and possesses a geochemical signature that is very similar to that of the Borrobol Tephra, which also occurs in three of the sequences reported here, but which lies close to the lower boundary of GI-1. The second occurs stratigraphically in the early Holocene below the Saksunarvatn Ash and is named the Ashik Tephra. This tephra is geochemically bimodal, with a rhyolitic component comparable to the An Druim Tephra that occurs later in the Holocene, and a basaltic component which is similar to the Saksunarvatn Ash. A third tephra occurs stratigraphically above the Saksunarvatn Ash and is provisionally named the Breakish Tephra. The consistent inter-site correlation demonstrated for these new tephras at several sites enhances the regional tephrostratigraphic framework, and increases the potential for correlating palaeoenvironmental events during GI-1 and the early Holocene. However, the occurrence of multiple tephras with similar geochemistry in close stratigraphic and temporal proximity has implications for the rigour with which tephrostratigraphic investigations must be performed.