930 resultados para Tetradecanoylphorbol Acetate -- pharmacology
Resumo:
Highly correlated ab initio calculations (CCSD(T)) are used to compute gas phase spectroscopic parameters of three isotopologues of the methyl acetate (CH3COOCH3, CD3COOCH3, and CH3COOCD3), searching to help experimental assignments and astrophysical detections. The molecule shows two conformers cis and trans separated by a barrier of 4457 cm−1. The potential energy surface presents 18 minima that intertransform through three internal rotation motions. To analyze the far infrared spectrum at low temperatures, a three-dimensional Hamiltonian is solved variationally. The two methyl torsion barriers are calculated to be 99.2 cm−1 (C–CH3) and 413.1 cm−1 (O–CH3), for the cis-conformer. The three fundamental torsional band centers of CH3COOCH3 are predicted to lie at 63.7 cm−1 (C–CH3), 136.1 cm−1 (O–CH3), and 175.8 cm−1 (C–O torsion) providing torsional state separations. For the 27 vibrational modes, anharmonic fundamentals and rovibrational parameters are provided. Computed parameters are compared with those fitted using experimental data.
Resumo:
The peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-dependent transcription factor that has been demonstrated to regulate fat cell development and glucose homeostasis. PPARγ is also expressed in a subset of macrophages and negatively regulates the expression of several proinflammatory genes in response to natural and synthetic ligands. We here demonstrate that PPARγ is expressed in macrophage foam cells of human atherosclerotic lesions, in a pattern that is highly correlated with that of oxidation-specific epitopes. Oxidized low density lipoprotein (oxLDL) and macrophage colony-stimulating factor, which are known to be present in atherosclerotic lesions, stimulated PPARγ expression in primary macrophages and monocytic cell lines. PPARγ mRNA expression was also induced in primary macrophages and THP-1 monocytic leukemia cells by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). Inhibition of protein kinase C blocked the induction of PPARγ expression by TPA, but not by oxLDL, suggesting that more than one signaling pathway regulates PPARγ expression in macrophages. TPA induced the expression of PPARγ in RAW 264.7 macrophages by increasing transcription from the PPARγ1 and PPARγ3 promoters. In concert, these observations provide insights into the regulation of PPARγ expression in activated macrophages and raise the possibility that PPARγ ligands may influence the progression of atherosclerosis.
Rho and Rab Small G Proteins Coordinately Reorganize Stress Fibers and Focal Adhesions in MDCK Cells
Resumo:
The Rho subfamily of the Rho small G protein family (Rho) regulates formation of stress fibers and focal adhesions in many types of cultured cells. In moving cells, dynamic and coordinate disassembly and reassembly of stress fibers and focal adhesions are observed, but the precise mechanisms in the regulation of these processes are poorly understood. We previously showed that 12-O-tetradecanoylphorbol-13-acetate (TPA) first induced disassembly of stress fibers and focal adhesions followed by their reassembly in MDCK cells. The reassembled stress fibers showed radial-like morphology that was apparently different from the original. We analyzed here the mechanisms of these TPA-induced processes. Rho inactivation and activation were necessary for the TPA-induced disassembly and reassembly, respectively, of stress fibers and focal adhesions. Both inactivation and activation of the Rac subfamily of the Rho family (Rac) inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly. Moreover, microinjection or transient expression of Rab GDI, a regulator of all the Rab small G protein family members, inhibited the TPA-induced reassembly of stress fibers and focal adhesions but not their TPA-induced disassembly, indicating that, furthermore, activation of some Rab family members is necessary for their TPA-induced reassembly. Of the Rab family members, at least Rab5 activation was necessary for the TPA-induced reassembly of stress fibers and focal adhesions. The TPA-induced, small G protein-mediated reorganization of stress fibers and focal adhesions was closely related to the TPA-induced cell motility. These results indicate that the Rho and Rab family members coordinately regulate the TPA-induced reorganization of stress fibers and focal adhesions that may cause cell motility.
Resumo:
Attachment of HeLa cells to gelatin induces the release of arachidonic acid (AA), which is essential for cell spreading. HeLa cells spreading in the presence of extracellular Ca2+ released more AA and formed more distinctive lamellipodia and filopodia than cells spreading in the absence of Ca2+. Addition of exogenous AA to cells spreading in the absence of extracellular Ca2+ restored the formation of lamellipodia and filopodia. To investigate the role of cytosolic phospholipase A2 (cPLA2) in regulating the differential release of AA and subsequent formation of lamellipodia and filopodia during HeLa cell adhesion, cPLA2 phosphorylation and translocation from the cytosol to the membrane were evaluated. During HeLa cell attachment and spreading in the presence of Ca2+, all cPLA2 became phosphorylated within 2 min, which is the earliest time cell attachment could be measured. In the absence of extracellular Ca2+, the time for complete cPLA2 phosphorylation was lengthened to <4 min. Maximal translocation of cPLA2 from cytosol to membrane during adhesion of cells to gelatin was similar in the presence or absence of extracellular Ca2+ and remained membrane associated throughout the duration of cell spreading. The amount of total cellular cPLA2 translocated to the membrane in the presence of extracellular Ca2+ went from <20% for unspread cells to >95% for spread cells. In the absence of Ca2+ only 55–65% of the total cPLA2 was translocated to the membrane during cell spreading. The decrease in the amount translocated could account for the comparable decrease in the amount of AA released by cells during spreading without extracellular Ca2+. Although translocation of cPLA2 from cytosol to membrane was Ca2+ dependent, phosphorylation of cPLA2 was attachment dependent and could occur both on the membrane and in the cytosol. To elucidate potential activators of cPLA2, the extracellular signal-related protein kinase 2 (ERK2) and protein kinase C (PKC) were investigated. ERK2 underwent a rapid phosphorylation upon early attachment followed by a dephosphorylation. Both rates were enhanced during cell spreading in the presence of extracellular Ca2+. Treatment of cells with the ERK kinase inhibitor PD98059 completely inhibited the attachment-dependent ERK2 phosphorylation but did not inhibit cell spreading, cPLA2 phosphorylation, translocation, or AA release. Activation of PKC by phorbol ester (12-O-tetradecanoylphorbol-13-acetate) induced and attachment-dependent phosphorylation of both cPLA2 and ERK2 in suspension cells. However, in cells treated with the PKC inhibitor Calphostin C before attachment, ERK2 phosphorylation was inhibited, whereas cPLA2 translocation and phosphorylation remained unaffected. In conclusion, although cPLA2-mediated release of AA during HeLa cell attachment to a gelatin substrate was essential for cell spreading, neither ERK2 nor PKC appeared to be responsible for the attachment-induced cPLA2 phosphorylation and the release of AA.
Resumo:
Using the mouse delta-opioid receptor cDNA as a probe, we have isolated genomic clones encoding the human mu- and kappa-opioid receptor genes. Their organization appears similar to that of the human delta receptor gene, with exon-intron boundaries located after putative transmembrane domains 1 and 4. The kappa gene was mapped at position q11-12 in human chromosome 8. A full-length cDNA encoding the human kappa-opioid receptor has been isolated. The cloned receptor expressed in COS cells presents a typical kappa 1 pharmacological profile and is negatively coupled to adenylate cyclase. The expression of kappa-opioid receptor mRNA in human brain, as estimated by reverse transcription-polymerase chain reaction, is consistent with the involvement of kappa-opioid receptors in pain perception, neuroendocrine physiology, affective behavior, and cognition. In situ hybridization studies performed on human fetal spinal cord demonstrate the presence of the transcript specifically in lamina II of the dorsal horn. Some divergences in structural, pharmacological, and anatomical properties are noted between the cloned human and rodent receptors.
Resumo:
A plethora of extracellular signals is known to induce a common set of immediate early genes. The immediate early response, therefore, must not be sufficient to determine the biological outcome. An example of this is found with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). A potent activator of protein kinase C, TPA can either stimulate or inhibit cell proliferation, depending on the cell type. This cell context-dependent response to TPA is observed with two subclones of NIH 3T3 cells, the P- and the N-3T3 clones. TPA is a mitogen for the P-3T3 but an antimitogen for the N-3T3 cells. The immediate early pathway is activated by TPA in both cell types, indicating that this pathway alone does not activate DNA synthesis. The delayed induction of cyclin D1 expression by TPA is observed only in the P-3T3 cells, correlating with mitogenesis. N-Acetylcysteine does not affect the immediate early pathway but can inhibit the TPA-mediated induction of cyclin D1 and DNA synthesis. In the N-3T3 cells, TPA causes an inhibition of the cyclin E-associated kinase at the G1/S transition, correlating with growth inhibition. The growth-inhibitory activity of TPA is not affected by N-acetylcysteine. Thus, the two TPA-regulated G1 pathways can be distinguished by their sensitivity to N-acetylcysteine. These results demonstrate that TPA can activate alternative G1 pathways. Moreover, the selection of the alternative G1 pathways is determined by the cell context, which, in turn, dictates the biological response to TPA.
Resumo:
Induction of phase 2 detoxification enzymes by phenolic antioxidants can account for prevention of tumor initiation but cannot explain why these compounds inhibit tumor promotion. Phase 2 genes are induced through an antioxidant response element (ARE). Although the ARE resembles an AP-1 binding site, we show that the major ARE binding and activating protein is not AP-1. Interestingly, AP-1 DNA binding activity was induced by the phenolic antioxidant tert-butylhydroquinone (BHQ), but the induction of AP-1 transcriptional activity by the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) was inhibited by this compound. BHQ induced expression of c-jun, junB, fra-1, and fra-2, which encode AP-1 components, but was a poor inducer of c-fos and had no effect on fosB. Like c-Fos and FosB, the Fra proteins heterodimerize with Jun proteins to form stable AP-1 complexes. However, Fra-containing AP-1 complexes have low transactivation potential. Furthermore, Fra-1 repressed AP-1 activity induced by either TPA or expression of c-Jun and c-Fos. We therefore conclude that inhibitory AP-1 complexes composed of Jun-Fra heterodimers, induced by BHQ, antagonize the transcriptional effects of the tumor promoter TPA, which are mediated by Jun-Fos heterodimers. Since AP-1 is an important mediator of tumor promoter action, these findings may explain the anti-tumor-promoting activity of phenolic antioxidants.
Resumo:
In this study, a new type of nanopigment, obtained from a nanoclay (NC) and a dye, was synthesized in the laboratory, and these nanopigments were used to color an ethylene vinyl acetate (EVA) copolymer. Several of these nanoclay-based pigments (NCPs) were obtained through variations in the cation exchange capacity (CEC) percentage of the NC exchanged with the dye and also including an ammonium salt. Composites of EVA and different amounts of the as-synthesized nanopigments were prepared in a melt-intercalation process. Then, the morphological, mechanical, thermal, rheological, and colorimetric properties of the samples were assessed. The EVA/NCP composites developed much better color properties than the samples containing only the dye, especially when both the dye and the ammonium salt were exchanged with NC. Their other properties were similar to those of more conventional EVA/NC composites.