901 resultados para Techniques of data analysis
Resumo:
PANI films were deposited on glass substrates by in-situ polymerization and characterized by UV-VIS spectroscopy and atomic force microscopy. A method is developed to accurately analyze ellipsometric data obtained for transparent glass substrates before and after modification with absorbing polymer films. Surface modification was made with an overlayer such as polyaniline ( PANI), which exhibits different optical properties by varying its oxidation state. First, the issue of using transparent substrates for ellipsometry studies was examined and then, spectroscopic ellipsometry was used to characterize absorbing overlayers on transparent glasses. The same methodologies of data analysis can be also applied to other absorbing films on transparent substrates, and deposited by different techniques.
Resumo:
Interactive visual representations complement traditional statistical and machine learning techniques for data analysis, allowing users to play a more active role in a knowledge discovery process and making the whole process more understandable. Though visual representations are applicable to several stages of the knowledge discovery process, a common use of visualization is in the initial stages to explore and organize a sometimes unknown and complex data set. In this context, the integrated and coordinated - that is, user actions should be capable of affecting multiple visualizations when desired - use of multiple graphical representations allows data to be observed from several perspectives and offers richer information than isolated representations. In this paper we propose an underlying model for an extensible and adaptable environment that allows independently developed visualization components to be gradually integrated into a user configured knowledge discovery application. Because a major requirement when using multiple visual techniques is the ability to link amongst them, so that user actions executed on a representation propagate to others if desired, the model also allows runtime configuration of coordinated user actions over different visual representations. We illustrate how this environment is being used to assist data exploration and organization in a climate classification problem.
Resumo:
Cyclosporin A (CsA) is used as an immunosuppressive agent and its prominent side effect is the induction of gingival overgrowth, which remains a significant problem. The risk factors appraised include the duration of treatment. However, there are no stereological and biochemical studies exploring the effects of long-term CsA therapy on gingival tissue. The purpose of the present study was to investigate the level of TGF-beta1 in saliva and describe the densities of fibroblasts and collagen fibers in the gingival tissue of rats treated with CsA for long periods. Rats were treated for 60, 120, 180 and 240 days with a daily subcutaneous injection of 10 mg/kg of body weight of CsA. At the end of the experimental periods, saliva was collected for the determination of TGF-beta1 levels. After histological processing, the oral epithelium and the connective tissue area were measured as well as the volume densities of fibroblasts (Vf) and collagen fibers (Vcf). After 60 and 120 days of CsA treatment, there was a significant increase in Vf and Vcf as well as a significant increase in TGF-beta1 levels. After 180 and 240 days, reduction in the gingival overgrowth associated with significant decreases in the level of TGF-beta1, and also decreased Vf and Vcf, were observed. The data presented here suggest that after long-term therapy, a decrease in TGF-beta1 levels occurs, which might contribute to an increase in the proteolytic activity of fibroblasts in the gingiva, favoring the normality of extracellular matrix synthesis.
Resumo:
The present study introduces a multi-agent architecture designed for doing automation process of data integration and intelligent data analysis. Different from other approaches the multi-agent architecture was designed using a multi-agent based methodology. Tropos, an agent based methodology was used for design. Based on the proposed architecture, we describe a Web based application where the agents are responsible to analyse petroleum well drilling data to identify possible abnormalities occurrence. The intelligent data analysis methods used was the Neural Network.
Resumo:
Through this workshop, database experts from the various ministries and the Central Statistical Office (CSO) were introduced to the CREATE and PROCESS modules of the REDATAM software, which could be used for database creation and analysis of data. This workshop was the second in a series of workshops aimed at promoting human-resource and capacity-building at the national and regional levels in the use of the REDATAM software. It also served as a qualifier for a follow-up workshop on the use of the web-publishing application of the software to be held in 2010.
Resumo:
Because the biomechanical behavior of dental implants is different from that of natural tooth, clinical problems may occur. The mechanism of stress distribution and load transfer to the implant/bone interface is a critical issue affecting the success rate of implants. Therefore, the aim of this study was to conduct a brief literature review of the available stress analysis methods to study implant-supported prosthesis loading and to discuss their contributions in the biomechanical evaluation of oral rehabilitation with implants. Several studies have used experimental, analytical, and computational models by means of finite element models (FEM), photoelasticity, strain gauges and associations of these methods to evaluate the biomechanical behavior of dental implants. The FEM has been used to evaluate new components, configurations, materials, and shapes of implants. The greatest advantage of the photoelastic method is the ability to visualize the stresses in complex structures, such as oral structures, and to observe the stress patterns in the whole model, allowing the researcher to localize and quantify the stress magnitude. Strain gauges can be used to assess in vivo and in vitro stress in prostheses, implants, and teeth. Some authors use the strain gauge technique with photoelasticity or FEM techniques. These methodologies can be widely applied in dentistry, mainly in the research field. Therefore, they can guide further research and clinical studies by predicting some disadvantages and streamlining clinical time.
Resumo:
Although an essential condition for the occurrence of human development, economic growth is not always efficiently converted into quality of life by nation-states. Accordingly, the objective of this study is to measure the social efficiency-the ability of a nation-state to convert its produced wealth into quality of life-of a set of 101 countries. To achieve this goal, the Data Envelopment Analysis method was used in its standard, cross-multiplicative and inverted form, by means of a new approach called 'triple index'. The main results indicated that the former Soviet republics and Eastern European countries stood out in terms of social efficiency. The developed countries, notwithstanding their high social indicators, did not excel in efficiency; however, the countries of south of Africa, despite having the worst social conditions, were also the most inefficient.
Resumo:
Factor analysis was used to develop a more detailed description of the human hand to be used in the creation of glove sizes; currently gloves sizes are small, medium, and large. The created glove sizes provide glove designers with the ability to create a glove design that can provide fit to the majority of hand variations in both the male and female populations. The research used the American National Survey (ANSUR) data that was collected in 1988. This data contains eighty-six length, width, height, and circumference measurements of the human hand for one thousand male subjects and thirteen hundred female subjects. Eliminating redundant measurements reduced the data to forty-six essential measurements. Factor analysis grouped the variables to form three factors. The factors were used to generate hand sizes by using percentiles along each factor axis. Two different sizing systems were created. The first system contains 125 sizes for male and female. The second system contains 7 sizes for males and 14 sizes for females. The sizing systems were compared to another hand sizing system that was created using the ANSUR database indicating that the systems created using factor analysis provide better fit.
Resumo:
Each plasma physics laboratory has a proprietary scheme to control and data acquisition system. Usually, it is different from one laboratory to another. It means that each laboratory has its own way to control the experiment and retrieving data from the database. Fusion research relies to a great extent on international collaboration and this private system makes it difficult to follow the work remotely. The TCABR data analysis and acquisition system has been upgraded to support a joint research programme using remote participation technologies. The choice of MDSplus (Model Driven System plus) is proved by the fact that it is widely utilized, and the scientists from different institutions may use the same system in different experiments in different tokamaks without the need to know how each system treats its acquisition system and data analysis. Another important point is the fact that the MDSplus has a library system that allows communication between different types of language (JAVA, Fortran, C, C++, Python) and programs such as MATLAB, IDL, OCTAVE. In the case of tokamak TCABR interfaces (object of this paper) between the system already in use and MDSplus were developed, instead of using the MDSplus at all stages, from the control, and data acquisition to the data analysis. This was done in the way to preserve a complex system already in operation and otherwise it would take a long time to migrate. This implementation also allows add new components using the MDSplus fully at all stages. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
The occupational exposure limits of different risk factors for development of low back disorders (LBDs) have not yet been established. One of the main problems in setting such guidelines is the limited understanding of how different risk factors for LBDs interact in causing injury, since the nature and mechanism of these disorders are relatively unknown phenomena. Industrial ergonomists' role becomes further complicated because the potential risk factors that may contribute towards the onset of LBDs interact in a complex manner, which makes it difficult to discriminate in detail among the jobs that place workers at high or low risk of LBDs. The purpose of this paper was to develop a comparative study between predictions based on the neural network-based model proposed by Zurada, Karwowski & Marras (1997) and a linear discriminant analysis model, for making predictions about industrial jobs according to their potential risk of low back disorders due to workplace design. The results obtained through applying the discriminant analysis-based model proved that it is as effective as the neural network-based model. Moreover, the discriminant analysis-based model proved to be more advantageous regarding cost and time savings for future data gathering.
Resumo:
Background: Aortic aneurysm and dissection are important causes of death in older people. Ruptured aneurysms show catastrophic fatality rates reaching near 80%. Few population-based mortality studies have been published in the world and none in Brazil. The objective of the present study was to use multiple-cause-of-death methodology in the analysis of mortality trends related to aortic aneurysm and dissection in the state of Sao Paulo, between 1985 and 2009. Methods: We analyzed mortality data from the Sao Paulo State Data Analysis System, selecting all death certificates on which aortic aneurysm and dissection were listed as a cause-of-death. The variables sex, age, season of the year, and underlying, associated or total mentions of causes of death were studied using standardized mortality rates, proportions and historical trends. Statistical analyses were performed by chi-square goodness-of-fit and H Kruskal-Wallis tests, and variance analysis. The joinpoint regression model was used to evaluate changes in age-standardized rates trends. A p value less than 0.05 was regarded as significant. Results: Over a 25-year period, there were 42,615 deaths related to aortic aneurysm and dissection, of which 36,088 (84.7%) were identified as underlying cause and 6,527 (15.3%) as an associated cause-of-death. Dissection and ruptured aneurysms were considered as an underlying cause of death in 93% of the deaths. For the entire period, a significant increased trend of age-standardized death rates was observed in men and women, while certain non-significant decreases occurred from 1996/2004 until 2009. Abdominal aortic aneurysms and aortic dissections prevailed among men and aortic dissections and aortic aneurysms of unspecified site among women. In 1985 and 2009 death rates ratios of men to women were respectively 2.86 and 2.19, corresponding to a difference decrease between rates of 23.4%. For aortic dissection, ruptured and non-ruptured aneurysms, the overall mean ages at death were, respectively, 63.2, 68.4 and 71.6 years; while, as the underlying cause, the main associated causes of death were as follows: hemorrhages (in 43.8%/40.5%/13.9%); hypertensive diseases (in 49.2%/22.43%/24.5%) and atherosclerosis (in 14.8%/25.5%/15.3%); and, as associated causes, their principal overall underlying causes of death were diseases of the circulatory (55.7%), and respiratory (13.8%) systems and neoplasms (7.8%). A significant seasonal variation, with highest frequency in winter, occurred in deaths identified as underlying cause for aortic dissection, ruptured and non-ruptured aneurysms. Conclusions: This study introduces the methodology of multiple-causes-of-death to enhance epidemiologic knowledge of aortic aneurysm and dissection in Sao Paulo, Brazil. The results presented confer light to the importance of mortality statistics and the need for epidemiologic studies to understand unique trends in our own population.
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.
Resumo:
The Primary Care Information System (SIAB) concentrates basic healthcare information from all different regions of Brazil. The information is collected by primary care teams on a paper-based procedure that degrades the quality of information provided to the healthcare authorities and slows down the process of decision making. To overcome these problems we propose a new data gathering application that uses a mobile device connected to a 3G network and a GPS to be used by the primary care teams for collecting the families' data. A prototype was developed in which a digital version of one SIAB form is made available at the mobile device. The prototype was tested in a basic healthcare unit located in a suburb of Sao Paulo. The results obtained so far have shown that the proposed process is a better alternative for data collecting at primary care, both in terms of data quality and lower deployment time to health care authorities.
Resumo:
Background: The CUPID (Cultural and Psychosocial Influences on Disability) study was established to explore the hypothesis that common musculoskeletal disorders (MSDs) and associated disability are importantly influenced by culturally determined health beliefs and expectations. This paper describes the methods of data collection and various characteristics of the study sample. Methods/Principal Findings: A standardised questionnaire covering musculoskeletal symptoms, disability and potential risk factors, was used to collect information from 47 samples of nurses, office workers, and other (mostly manual) workers in 18 countries from six continents. In addition, local investigators provided data on economic aspects of employment for each occupational group. Participation exceeded 80% in 33 of the 47 occupational groups, and after pre-specified exclusions, analysis was based on 12,426 subjects (92 to 1018 per occupational group). As expected, there was high usage of computer keyboards by office workers, while nurses had the highest prevalence of heavy manual lifting in all but one country. There was substantial heterogeneity between occupational groups in economic and psychosocial aspects of work; three-to fivefold variation in awareness of someone outside work with musculoskeletal pain; and more than ten-fold variation in the prevalence of adverse health beliefs about back and arm pain, and in awareness of terms such as "repetitive strain injury" (RSI). Conclusions/Significance: The large differences in psychosocial risk factors (including knowledge and beliefs about MSDs) between occupational groups should allow the study hypothesis to be addressed effectively.
Resumo:
The autoregressive (AR) estimator, a non-parametric method, is used to analyze functional magnetic resonance imaging (fMRI) data. The same method has been used, with success, in several other time series data analysis. It uses exclusively the available experimental data points to estimate the most plausible power spectra compatible with the experimental data and there is no need to make any assumption about non-measured points. The time series, obtained from fMRI block paradigm data, is analyzed by the AR method to determine the brain active regions involved in the processing of a given stimulus. This method is considerably more reliable than the fast Fourier transform or the parametric methods. The time series corresponding to each image pixel is analyzed using the AR estimator and the corresponding poles are obtained. The pole distribution gives the shape of power spectra, and the pixels with poles at the stimulation frequency are considered as the active regions. The method was applied in simulated and real data, its superiority is shown by the receiver operating characteristic curves which were obtained using the simulated data.