967 resultados para TIME SERIES


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Campylobacter, a major zoonotic pathogen, displays seasonality in poultry and in humans. In order to identify temporal patterns in the prevalence of thermophilic Campylobacter spp. in a voluntary monitoring programme in broiler flocks in Germany and in the reported human incidence, time series methods were used. The data originated between May 2004 and June 2007. By the use of seasonal decomposition, autocorrelation and cross-correlation functions, it could be shown that an annual seasonality is present. However, the peak month differs between sample submission, prevalence in broilers and human incidence. Strikingly, the peak in human campylobacterioses preceded the peak in broiler prevalence in Lower Saxony rather than occurring after it. Significant cross-correlations between monthly temperature and prevalence in broilers as well as between human incidence, monthly temperature, rainfall and wind-force were identified. The results highlight the necessity to quantify the transmission of Campylobacter from broiler to humans and to include climatic factors in order to gain further insight into the epidemiology of this zoonotic disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accuracy of Global Positioning System (GPS) time series is degraded by the presence of offsets. To assess the effectiveness of methods that detect and remove these offsets, we designed and managed the Detection of Offsets in GPS Experiment. We simulated time series that mimicked realistic GPS data consisting of a velocity component, offsets, white and flicker noises (1/f spectrum noises) composed in an additive model. The data set was made available to the GPS analysis community without revealing the offsets, and several groups conducted blind tests with a range of detection approaches. The results show that, at present, manual methods (where offsets are hand picked) almost always give better results than automated or semi‒automated methods (two automated methods give quite similar velocity bias as the best manual solutions). For instance, the fifth percentile range (5% to 95%) in velocity bias for automated approaches is equal to 4.2 mm/year (most commonly ±0.4 mm/yr from the truth), whereas it is equal to 1.8 mm/yr for the manual solutions (most commonly 0.2 mm/yr from the truth). The magnitude of offsets detectable by manual solutions is smaller than for automated solutions, with the smallest detectable offset for the best manual and automatic solutions equal to 5 mm and 8 mm, respectively. Assuming the simulated time series noise levels are representative of real GPS time series, robust geophysical interpretation of individual site velocities lower than 0.2–0.4 mm/yr is therefore certainly not robust, although a limit of nearer 1 mm/yr would be a more conservative choice. Further work to improve offset detection in GPS coordinates time series is required before we can routinely interpret sub‒mm/yr velocities for single GPS stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In summer 2005, two pilot snow/firn cores were obtained at 5365 and 5206 m a.s.l. on Fedchenko glacier, Pamirs, Tajikistan, the world's longest and deepest alpine glacier. The well-defined seasonal layering appearing in stable-isotope and trace element distribution identified the physical links controlling the climate and aerosol concentration signals. Air temperature and humidity/precipitation were the primary determinants of stable-isotope ratios. Most precipitation over the Pamirs originated in the Atlantic. In summer, water vapor was re-evaporated from semi-arid regions in central Eurasia. The semi-arid regions contribute to non-soluble aerosol loading in snow accumulated on Fedchenko glacier. In the Pamir core, concentrations of rare earth elements, major and other elements were less than those in the Tien Shan but greater than those in Antarctica, Greenland, the Alps and the Altai. The content of heavy metals in the Fedchenko cores is 2-14 times lower than in the Altai glaciers. Loess from Afghan-Tajik deposits is the predominant lithogenic material transported to the Pamirs. Trace elements generally showed that aerosol concentration tended to increase on the windward slopes during dust storms but tended to decrease with altitude under clear conditions. The trace element profile documented one of the most severe droughts in the 20th century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the summers of 2001 and 2002, glacio-climatological research was performed at 4110-4120 m a.s.l. on the Belukha snow/firn plateau, Siberian Altai. Hundreds of samples from snow pits and a 21 m snow/firn core were collected to establish the annual/seasonal/monthly depth-accumulation scale, based on stable-isotope records, stratigraphic analyses and meteorological and synoptic data. The fluctuations of water stable-isotope records show well-preserved seasonal variations. The delta(18)O and delta D relationships in precipitation, snow pits and the snow/firn core have the same slope to the covariance as that of the global meteoric water line. The origins of precipitation nourishing the Belukha plateau were determined based on clustering analysis of delta(18)O and d-excess records and examination of synoptic atmospheric patterns. Calibration and validation of the developed clusters occurred at event and monthly timescales with about 15% uncertainty. Two distinct moisture sources were shown: oceanic sources with d-excess < 12 parts per thousand, and the Aral-Caspian closed drainage basin sources with d-excess > 12 parts per thousand. Two-thirds of the annual accumulation was from oceanic precipitation, of which more than half had isotopic ratios corresponding to moisture evaporated over the Atlantic Ocean. Precipitation from the Arctic/Pacific Ocean had the lowest deuterium excess, contributing one-tenth to annual accumulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. Method: TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. Results: TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. Conclusions: TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).