988 resultados para TEMPERATURES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note describes a simple procedure for removing unphysical temporal discontinuities in ERA-Interim upper stratospheric global mean temperatures in March 1985 and August 1998 that have arisen due to changes in satellite radiance data used in the assimilation. The derived temperature adjustments (offsets) are suitable for use in stratosphere-resolving chemistry-climate models that are nudged (relaxed) to ERA-Interim winds and temperatures. Simulations using a nudged version of the Canadian Middle Atmosphere Model (CMAM) show that the inclusion of the temperature adjustments produces temperature time series that are devoid of the large jumps in 1985 and 1998. Due to its strong temperature dependence, the simulated upper stratospheric ozone is also shown to vary smoothly in time, unlike in a nudged simulation without the adjustments where abrupt changes in ozone occur at the times of the temperature jumps. While the adjustments to the ERA-Interim temperatures remove significant artefacts in the nudged CMAM simulation, spurious transient effects that arise due to water vapour and persist for about 5 yr after the 1979 switch to ERA-Interim data are identified, underlining the need for caution when analysing trends in runs nudged to reanalyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asynchronously coupled atmosphere and ocean general circulation model simulations are used to examine the consequences of changes in the west/east sea-surface temperature (SST) gradient across the equatorial Pacific at the last glacial maximum (LGM). Simulations forced by the CLIMAP SST for the LGM, where the west/east SST gradient across the Pacific is reduced compared to present, produce a reduction in the strength of the trade winds and a decrease in the west/east slope of the equatorial thermocline that is incompatible with thermocline depths newly inferred from foraminiferal assemblages. Stronger-than-present trade winds, and a more realistic simulation of the thermocline slope, are produced when eastern Pacific SSTs are 2°C cooler than western Pacific SSTs. Our study highlights the importance of spatial heterogeneity in tropical SSTs in determining key features of the glacial climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface temperature is a key aspect of weather and climate, but the term may refer to different quantities that play interconnected roles and are observed by different means. In a community-based activity in June 2012, the EarthTemp Network brought together 55 researchers from five continents to improve the interaction between scientific communities who focus on surface temperature in particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The workshop identified key needs for progress towards meeting scientific and societal requirements for surface temperature understanding and information, which are presented in this community paper. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships between different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information provided. Steps were also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the potential contribution of observed changes in lower stratospheric water vapour to stratospheric temperature variations over the past three decades using a comprehensive global climate model (GCM). Three case studies are considered. In the first, the net increase in stratospheric water vapour (SWV) from 1980–2010 (derived from the Boulder frost-point hygrometer record using the gross assumption that this is globally representative) is estimated to have cooled the lower stratosphere by up to ∼0.2 K decade−1 in the global and annual mean; this is ∼40% of the observed cooling trend over this period. In the Arctic winter stratosphere there is a dynamical response to the increase in SWV, with enhanced polar cooling of 0.6 K decade−1 at 50 hPa and warming of 0.5 K decade−1 at 1 hPa. In the second case study, the observed decrease in tropical lower stratospheric water vapour after the year 2000 (imposed in the GCM as a simplified representation of the observed changes derived from satellite data) is estimated to have caused a relative increase in tropical lower stratospheric temperatures by ∼0.3 K at 50 hPa. In the third case study, the wintertime dehydration in the Antarctic stratospheric polar vortex (again using a simplified representation of the changes seen in a satellite dataset) is estimated to cause a relative warming of the Southern Hemisphere polar stratosphere by up to 1 K at 100 hPa from July–October. This is accompanied by a weakening of the westerly winds on the poleward flank of the stratospheric jet by up to 1.5 m s−1 in the GCM. The results show that, if the measurements are representative of global variations, SWV should be considered as important a driver of transient and long-term variations in lower stratospheric temperature over the past 30 years as increases in long-lived greenhouse gases and stratospheric ozone depletion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data are presented for a nighttime ion heating event observed by the EISCAT radar on 16 December 1988. In the experiment, the aspect angle between the radar beam and the geomagnetic field was fixed at 54.7°, which avoids any ambiguity in derived ion temperature caused by anisotropy in the ion velocity distribution function. The data were analyzed with an algorithm which takes account of the non-Maxwellian line-of-sight ion velocity distribution. During the heating event, the derived spectral distortion parameter (D∗) indicated that the distribution function was highly distorted from a Maxwellian form when the ion drift increased to 4 km s−1. The true three-dimensional ion temperature was used in the simplified ion balance equation to compute the ion mass during the heating event. The ion composition was found to change from predominantly O4 to mainly molecular ions. A theoretical analysis of the ion composition, using the MSIS86 model and published values of the chemical rate coefficients, accounts for the order-of-magnitude increase in the atomic/molecular ion ratio during the event, but does not successfully explain the very high proportion of molecular ions that was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pronounced intermodel differences in the projected response of land surface precipitation (LSP) to future anthropogenic forcing remain in the Coupled Model Intercomparison Project Phase 5 model integrations. A large fraction of the intermodel spread in projected LSP trends is demonstrated here to be associated with systematic differences in simulated sea surface temperature (SST) trends, especially the representation of changes in (i) the interhemispheric SST gradient and (ii) the tropical Pacific SSTs. By contrast, intermodel differences in global mean SST, representative of differing global climate sensitivities, exert limited systematic influence on LSP patterns. These results highlight the importance to regional terrestrial precipitation changes of properly simulating the spatial distribution of large-scale, remote changes as reflected in the SST response to increasing greenhouse gases. Moreover, they provide guidance regarding which region-specific precipitation projections may be potentially better constrained for use in climate change impact assessments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel extraction device for water and noble gases from speleothem samples for noble gas paleotemperature determination. The “combined vacuum crushing and sieving (CVCS) system” was designed to reduce the atmospheric noble gas contents from air inclusions in speleothem samples by up to 2 orders of magnitude without adsorbing atmospheric noble gases onto the freshly produced grain surfaces, a process that had often hampered noble gas temperature (NGT) determination in the past. We also present the results from first performance tests of the CVCS system processing stalagmite samples grown at a known temperature. This temperature is reliably reproduced by the NGTs derived from Ar, Kr, and Xe extracted from the samples. The CVCS system is, therefore, suitable for routine determinations of accurate NGTs. In combination with stalagmite dating, these NGTs will allow reconstructing past regional temperature evolutions, and also support the interpretation of the often complex stable isotope records preserved in the stalagmites' calcite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stalagmites are natural archives containing detailed information on continental climate variability of the past. Microthermometric measurements of fluid inclusion homogenisation temperatures allow determination of stalagmite formation temperatures by measuring the radius of stable laser-induced vapour bubbles inside the inclusions. A reliable method for precisely measuring the radius of vapour bubbles is presented. The method is applied to stalagmite samples for which the formation temperature is known. An assessment of the bubble radius measurement accuracy and how this error influences the uncertainty in determining the formation temperature is provided. We demonstrate that the nominal homogenisation temperature of a single inclusion can be determined with an accuracy of ±0.25 °C, if the volume of the inclusion is larger than 105 μm3. With this method, we could measure in a proof-of-principle investigation that the formation temperature of 10–20 yr old inclusions in a stalagmite taken from the Milandre cave is 9.87 ± 0.80 °C, while the mean annual surface temperature, that in the case of the Milandre cave correlates well with the cave temperature, was 9.6 ± 0.15 °C, calculated from actual measurements at that time, showing a very good agreement. Formation temperatures of inclusions formed during the last 450 yr are found in a temperature range between 8.4 and 9.6 °C, which corresponds to the calculated average surface temperature. Paleotemperatures can thus be determined within ±1.0 °C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycorrhizal associations occur in a range of habitats in which soils are subject to low temperature (≤15 °C) for a significant part of the year. Despite this, most of our understanding of mycorrhizal fungi and their interactions with their plant hosts is based on physiological investigations conducted in the range 20–37 °C using fungi of temperate origin. Comparatively little consideration has been given to the cold edaphic conditions in which many mycorrhizas survive and prosper, and the physiological and ecological consequences of their low temperature environments. In this review, we consider the distribution and persistence of arbuscular and ectomycorrhizal mycorrhizal associations in cold environments and highlight progress in understanding adaptations to freezing resistance and nutrient acquisition at low temperature in mycorrhizal fungi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days. Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution, microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2 evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001) was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2– 12 °C)>Q10(12–22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2–12 °C)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The level of agreement between climate model simulations and observed surface temperature change is a topic of scientific and policy concern. While the Earth system continues to accumulate energy due to anthropogenic and other radiative forcings, estimates of recent surface temperature evolution fall at the lower end of climate model projections. Global mean temperatures from climate model simulations are typically calculated using surface air temperatures, while the corresponding observations are based on a blend of air and sea surface temperatures. This work quantifies a systematic bias in model-observation comparisons arising from differential warming rates between sea surface temperatures and surface air temperatures over oceans. A further bias arises from the treatment of temperatures in regions where the sea ice boundary has changed. Applying the methodology of the HadCRUT4 record to climate model temperature fields accounts for 38% of the discrepancy in trend between models and observations over the period 1975–2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lake surface water temperatures (LSWTs) of 246 globally distributed large lakes were derived from Along-Track Scanning Radiometers (ATSR) for the period 1991–2011. The climatological cycles of mean LSWT derived from these data quantify on a global scale the responses of large lakes' surface temperatures to the annual cycle of forcing by solar radiation and the ambient meteorological conditions. LSWT cycles reflect the twice annual peak in net solar radiation for lakes between 1°S to 12°N. For lakes without a lake-mean seasonal ice cover, LSWT extremes exceed air temperatures by 0.5–1.7 °C for maximum and 0.7–1.9 °C for minimum temperature. The summer maximum LSWTs of lakes from 25°S to 35°N show a linear decrease with increasing altitude; −3.76 ± 0.17 °C km−1 (inline image = 0.95), marginally lower than the corresponding air temperature decrease with altitude −4.15 ± 0.24 °C km−1 (inline image = 0.95). Lake altitude of tropical lakes account for 0.78–0.83 (inline image) of the variation in the March to June LSWT–air temperature differences, with differences decreasing by 1.9 °C as the altitude increases from 500 to 1800 m above sea level (a.s.l.) We define an ‘open water phase’ as the length of time the lake-mean LSWT remains above 4 °C. There is a strong global correlation between the start and end of the lake-mean open water phase and the spring and fall 0 °C air temperature transition days, (inline image = 0.74 and 0.80, respectively), allowing for a good estimation of timing and length of the open water phase of lakes without LSWT observations. Lake depth, lake altitude and distance from coast further explain some of the inter-lake variation in the start and end of the open water phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the teleconnections from the tropical Atlantic to the Indo-Pacific region from inter-annual to centennial time scales will be reviewed. Identified teleconnections and hypotheses on mechanisms at work are reviewed and further explored in a century-long pacemaker coupled ocean-atmosphere simulation ensemble. There is a substantial impact of the tropical Atlantic on the Pacific region at inter-annual time scales. An Atlantic Niño (Niña) event leads to rising (sinking) motion in the Atlantic region, which is compensated by sinking (rising) motion in the central-western Pacific. The sinking (rising) motion in the central-western Pacific induces easterly (westerly) surface wind anomalies just to the west, which alter the thermocline. These perturbations propagate eastward as upwelling (downwelling) Kelvin-waves, where they increase the probability for a La Niña (El Niño) event. Moreover, tropical North Atlantic sea surface temperature anomalies are also able to lead La Niña/El Niño development. At multidecadal time scales, a positive (negative) Atlantic Multidecadal Oscillation leads to a cooling (warming) of the eastern Pacific and a warming (cooling) of the western Pacific and Indian Ocean regions. The physical mechanism for this impact is similar to that at inter-annual time scales. At centennial time scales, the Atlantic warming induces a substantial reduction of the eastern Pacific warming even under CO2 increase and to a strong subsurface cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the effect of monensin on the performance of growing cattle under different environmental temperatures, 24 male calves (81.9 +/- 7.7 kg mean weight and 100 days old) were distributed in a 2 x 2 factorial arrangement, contrasting 0 or 85 mg monensin/animal per day at 24.3 or 33.2 degrees C (environmental temperatures). Monensin supplementation increased weight gain (P=0.036), improved feed efficiency (P=0.040), increased ruminal concentrations of volatile fatty acids (VFA; P=0.003) and decreased the molar proportion of butyrate (P=0.034); all effects irrespective of environmental temperatures. A temperature-dependent monensin effect was detected on nitrogen retention (P=0.018) and N retained:N absorbed ratio (P=0.012). Animals fed monensin retained higher N amounts than those of the non-supplemented ones when the environmental temperature was 33.2 degrees C. Environmental temperature and monensin supplementation showed an interaction effect on urine N concentration (P=0.003). Temperature did not affect N excretion in monensin-fed animals, but increased N excretion in the non-supplemented ones. Monensin increased the crude protein (CP) digestibility (P=0.094) for