908 resultados para TBX2, TBX3, p21, breast cancer driver mutations, Tet-On system
Resumo:
Purpose/Objective(s): Letrozole radiosensitizes breast cancer cells in vitro. In clinical settings, no data exist for the combination of letrozole and radiotherapy. We assessed concurrent and sequential radiotherapy and letrozole in the adjuvant setting.Materials/Methods: The present study is registered with ClinicalTrials.gov, number NCT00208273. This Phase 2 randomized trial was undertaken in two centers in France and one in Switzerland between January 12, 2005, and February 21, 2007. One hundred fifty postmenopausal women with early-stage breast cancer were randomly assigned after conserving surgery to either concurrent radiotherapy and letrozole (n = 75) or sequential radiotherapy and letrozole (n = 75). Randomization was open label with a minimization technique, stratified by investigational centers, chemotherapy (yes vs. no), radiation boost (yes vs. no), and value of radiation-induced lymphocyte apoptosis (#16% vs. .16%). The whole breast was irradiated to a total dose of 50 Gy in 25 fractions over 5 weeks. In the case of supraclavicular and internal mammary node irradiation, the dose was 44 - 50 Gy. Letrozole was administered orally once daily at a dose of 2 - 5 mg for 5 years (beginning 3 weeks pre-radiotherapy in the concomitant group, and 3 weeks postradiotherapy in the sequential group). The primary endpoint was the occurrence of acute (during and within 6 weeks of radiotherapy) and late (within 2 years) radiation-induced Grade 2 or worse toxic effects of the skin and lung (functional pulmonary test and lung CT-scan). Analyses were by intention-to-treat. The long-term follow-up after 2 years was only performed in Montpellier (n = 121) and evaluated skin toxicity (clinical examination every 6 months), lung fibrosis (one CT-scan yearly), cosmetic outcome.Results: All patients were analyzed apart from 1 in the concurrent group who withdrew consent before any treatment.Within the first 2 years (n = 149), no lung toxicity was identified by CT scan and no modification from baseline was noted by the lung diffusion capacity test. Two patients in each group had Grade 2 or worse late effects (both radiation-induced subcutaneous fibrosis [RISF]). After 2 years (n = 121), and with a median follow-up of 50 months (38-62), 2 patients (1 in each arm) presented a Grade 3 RISF. No lung toxicity was identified by CT scan. Cosmetic results (photographies) and quality of life was good to excellent. All patients who had Grade 3 subcutaneous fibrosis had an RILA value of 16% or less, irrespective of the sequence with letrozole.Conclusions:With long-term follow-up, letrozole can be safely delivered shortly after surgery and concomitantly with radiotherapy.
Resumo:
To better understand the relationship between tumor-host interactions and the efficacy of chemotherapy, we have developed an analytical approach to quantify several biological processes observed in gene expression data sets. We tested the approach on tumor biopsies from individuals with estrogen receptor-negative breast cancer treated with chemotherapy. We report that increased stromal gene expression predicts resistance to preoperative chemotherapy with 5-fluorouracil, epirubicin and cyclophosphamide (FEC) in subjects in the EORTC 10994/BIG 00-01 trial. The predictive value of the stromal signature was successfully validated in two independent cohorts of subjects who received chemotherapy but not in an untreated control group, indicating that the signature is predictive rather than prognostic. The genes in the signature are expressed in reactive stroma, according to reanalysis of data from microdissected breast tumor samples. These findings identify a previously undescribed resistance mechanism to FEC treatment and suggest that antistromal agents may offer new ways to overcome resistance to chemotherapy.
Resumo:
Metabolic syndrome has been associated with an increased risk of various cancers. A multicenter study conducted in Italy and Switzerland on 3,869 cases of breast cancer in post-menopause reported a relative risk of 1.75 in women with the metabolic syndrome, confirming the results of other smaller epidemiological studies.
Resumo:
ABSTRACT: INTRODUCTION: Prospective epidemiologic studies have consistently shown that levels of circulating androgens in postmenopausal women are positively associated with breast cancer risk. However, data in premenopausal women are limited. METHODS: A case-control study nested within the New York University Women's Health Study was conducted. A total of 356 cases (276 invasive and 80 in situ) and 683 individually-matched controls were included. Matching variables included age and date, phase, and day of menstrual cycle at blood donation. Testosterone, androstenedione, dehydroandrosterone sulfate (DHEAS) and sex hormone-binding globulin (SHBG) were measured using direct immunoassays. Free testosterone was calculated. RESULTS: Premenopausal serum testosterone and free testosterone concentrations were positively associated with breast cancer risk. In models adjusted for known risk factors of breast cancer, the odds ratios for increasing quintiles of testosterone were 1.0 (reference), 1.5 (95% confidence interval (CI), 0.9 to 2.3), 1.2 (95% CI, 0.7 to 1.9), 1.4 (95% CI, 0.9 to 2.3) and 1.8 (95% CI, 1.1 to 2.9; Ptrend = 0.04), and for free testosterone were 1.0 (reference), 1.2 (95% CI, 0.7 to 1.8), 1.5 (95% CI, 0.9 to 2.3), 1.5 (95% CI, 0.9 to 2.3), and 1.8 (95% CI, 1.1 to 2.8, Ptrend = 0.01). A marginally significant positive association was observed with androstenedione (P = 0.07), but no association with DHEAS or SHBG. Results were consistent in analyses stratified by tumor type (invasive, in situ), estrogen receptor status, age at blood donation, and menopausal status at diagnosis. Intra-class correlation coefficients for samples collected from 0.8 to 5.3 years apart (median 2 years) in 138 cases and 268 controls were greater than 0.7 for all biomarkers except for androstenedione (0.57 in controls). CONCLUSIONS: Premenopausal concentrations of testosterone and free testosterone are associated with breast cancer risk. Testosterone and free testosterone measurements are also highly reliable (that is, a single measurement is reflective of a woman's average level over time). Results from other prospective studies are consistent with our results. The impact of including testosterone or free testosterone in breast cancer risk prediction models for women between the ages of 40 and 50 years should be assessed. Improving risk prediction models for this age group could help decision making regarding both screening and chemoprevention of breast cancer.
Resumo:
A limited number of receptor tyrosine kinases (e.g., ErbB and fibroblast growth factor receptor families) have been genetically linked to breast cancer development. Here, we investigated the contribution of the Ret receptor tyrosine kinase to breast tumor biology. Ret was expressed in primary breast tumors and cell lines. In estrogen receptor (ER)alpha-positive MCF7 and T47D lines, the ligand (glial-derived neurotrophic factor) activated signaling pathways and increased anchorage-independent proliferation in a Ret-dependent manner, showing that Ret signaling is functional in breast tumor cells. Ret expression was induced by estrogens and Ret signaling enhanced estrogen-driven proliferation, highlighting the functional interaction of Ret and ER pathways. Furthermore, Ret was detected in primary cancers, and there were higher Ret levels in ERalpha-positive tumors. In summary, we showed that Ret is a novel proliferative pathway interacting with ER signaling in vitro. Expression of Ret in primary breast tumors suggests that Ret might be a novel therapeutic target in breast cancer.
Resumo:
Introduction: Trastuzumab (T) is a cornerstone in the treatment of patients with HER2-overexpressing advanced breast cancer and development of resistance to T is a major therapeutic problem. HER-2 is part of a highly interactive signaling network that may impair efficacy of endocrine therapy. A sequential treatment design was chosen in this trial to ensure complete resistance to single agent therapy before receiving both a non-steroidal aromatase inhibitor (AI) and T. Any kind of clinical activity with combined treatment of AI and T after progression of single agent treatments could indicate restoration of sensitivity as a consequence of cross-talking and networking between both pathways. Methods: Key eligibility criteria included postmenopausal patients (pts.) with advanced, measurable, HER-2 positive (assessed by FISH, ratio (≥2)), HR positive disease and progression on prior treatment with a non-steroidal AI, e.g. letrozole or anastrozole, either in an adjuvant or advanced setting. Pts. received standard dose T monotherapy either weekly or three-weekly in step 1 and upon disease progression, continued T in combination with letrozole in step 2. The primary endpoint was clinical benefit response (CBR: CR, PR or SD for at least 24 weeks (+/- 1 week) according to RECIST) in step 2. Results: Thirteen pts. were enrolled in five centers in Switzerland. In step 1, six pts. (46%) achieved CBR. Median time to progression (TTP) was 161 days (Range: 50 - 627). Based on data collected until the end of May 2010, CBR was observed in seven out of the eleven evaluable pts. (64%) in step 2, including one pt. with partial response. Four of the seven pts. within step 2 that achieved CBR also had CBR in step 1. Seven out of eleven pts. have documented tumor progression during step 2 treatment. Median TTP for all eleven pts. was 184 days (range 61 - 471). Mean time on study treatment (TTP in step 1 plus TTP in step 2) for pts. reaching step 2 was 380 days (range 174 - 864). Adverse events were generally mild. Conclusion: Results of this proof-of-principle trial suggest that complete resistance to both AI and T can be overcome in a proportion of pts. by combined treatment of AI and T, as all pts. served as their own control. Our results appear promising for a new treatment strategy which offers a chemotherapy-free and well-tolerated option for at least a subset of the pts. with HR positive, HER-2 positive breast cancer. Further trials will need to corroborate this finding.
Resumo:
Background: Estrogen receptor positive (ER+) breast cancers (BC) are heterogeneous with regard to their clinical behavior and response to therapies. The ER is currently the best predictor of response to the anti-estrogen agent tamoxifen, yet up to 30-40% of ER+ BC will relapse despite tamoxifen treatment. New prognostic biomarkers and further biological understanding of tamoxifen resistance are required. We used gene expression profiling to develop an outcome-based predictor using a training set of 255 ER+ BC samples from women treated with adjuvant tamoxifen monotherapy. We used clusters of highly correlated genes to develop our predictor to facilitate both signature stability and biological interpretation. Independent validation was performed using 362 tamoxifen-treated ER+ BC samples obtained from multiple institutions and treated with tamoxifen only in the adjuvant and metastatic settings.Results: We developed a gene classifier consisting of 181 genes belonging to 13 biological clusters. In the independent set of adjuvantly-treated samples, it was able to define two distinct prognostic groups (HR 2.01 95% CI: 1.29-3.13; p = 0.002). Six of the 13 gene clusters represented pathways involved in cell cycle and proliferation. In 112 metastatic breast cancer patients treated with tamoxifen, one of the classifier components suggesting a cellular inflammatory mechanism was significantly predictive of response.Conclusion: We have developed a gene classifier that can predict clinical outcome in tamoxifen-treated ER+ BC patients. Whilst our study emphasizes the important role of proliferation genes in prognosis, our approach proposes other genes and pathways that may elucidate further mechanisms that influence clinical outcome and prediction of response to tamoxifen.
Resumo:
Introduction: Early detection of breast cancer (BC) with mammography may cause overdiagnosis and overtreatment, detecting tumors which would remain undiagnosed during a lifetime. The aims of this study were: first, to model invasive BC incidence trends in Catalonia (Spain) taking into account reproductive and screening data; and second, to quantify the extent of BC overdiagnosis. Methods: We modeled the incidence of invasive BC using a Poisson regression model. Explanatory variables were: age at diagnosis and cohort characteristics (completed fertility rate, percentage of women that use mammography at age 50, and year of birth). This model also was used to estimate the background incidence in the absence of screening. We used a probabilistic model to estimate the expected BC incidence if women in the population used mammography as reported in health surveys. The difference between the observed and expected cumulative incidences provided an estimate of overdiagnosis. Results: Incidence of invasive BC increased, especially in cohorts born from 1940 to 1955. The biggest increase was observed in these cohorts between the ages of 50 to 65 years, where the final BC incidence rates more than doubled the initial ones. Dissemination of mammography was significantly associated with BC incidence and overdiagnosis. Our estimates of overdiagnosis ranged from 0.4% to 46.6%, for women born around 1935 and 1950, respectively. Conclusions: Our results support the existence of overdiagnosis in Catalonia attributed to mammography usage, and the limited malignant potential of some tumors may play an important role. Women should be better informed about this risk. Research should be oriented towards personalized screening and risk assessment tools.
Resumo:
Background: During the last part of the 1990s the chance of surviving breast cancer increased. Changes in survival functions reflect a mixture of effects. Both, the introduction of adjuvant treatments and early screening with mammography played a role in the decline in mortality. Evaluating the contribution of these interventions using mathematical models requires survival functions before and after their introduction. Furthermore, required survival functions may be different by age groups and are related to disease stage at diagnosis. Sometimes detailed information is not available, as was the case for the region of Catalonia (Spain). Then one may derive the functions using information from other geographical areas. This work presents the methodology used to estimate age- and stage-specific Catalan breast cancer survival functions from scarce Catalan survival data by adapting the age- and stage-specific US functions. Methods: Cubic splines were used to smooth data and obtain continuous hazard rate functions. After, we fitted a Poisson model to derive hazard ratios. The model included time as a covariate. Then the hazard ratios were applied to US survival functions detailed by age and stage to obtain Catalan estimations. Results: We started estimating the hazard ratios for Catalonia versus the USA before and after the introduction of screening. The hazard ratios were then multiplied by the age- and stage-specific breast cancer hazard rates from the USA to obtain the Catalan hazard rates. We also compared breast cancer survival in Catalonia and the USA in two time periods, before cancer control interventions (USA 1975–79, Catalonia 1980–89) and after (USA and Catalonia 1990–2001). Survival in Catalonia in the 1980–89 period was worse than in the USA during 1975–79, but the differences disappeared in 1990–2001. Conclusion: Our results suggest that access to better treatments and quality of care contributed to large improvements in survival in Catalonia. On the other hand, we obtained detailed breast cancer survival functions that will be used for modeling the effect of screening and adjuvant treatments in Catalonia.
Resumo:
Background: At present, it is complicated to use screening trials to determine the optimal age intervals and periodicities of breast cancer early detection. Mathematical models are an alternative that has been widely used. The aim of this study was to estimate the effect of different breast cancer early detection strategies in Catalonia (Spain), in terms of breast cancer mortality reduction (MR) and years of life gained (YLG), using the stochastic models developed by Lee and Zelen (LZ). Methods: We used the LZ model to estimate the cumulative probability of death for a cohort exposed to different screening strategies after T years of follow-up. We also obtained the cumulative probability of death for a cohort with no screening. These probabilities were used to estimate the possible breast cancer MR and YLG by age, period and cohort of birth. The inputs of the model were: incidence of, mortality from and survival after breast cancer, mortality from other causes, distribution of breast cancer stages at diagnosis and sensitivity of mammography. The outputs were relative breast cancer MR and YLG. Results: Relative breast cancer MR varied from 20% for biennial exams in the 50 to 69 age interval to 30% for annual exams in the 40 to 74 age interval. When strategies differ in periodicity but not in the age interval of exams, biennial screening achieved almost 80% of the annual screening MR. In contrast to MR, the effect on YLG of extending screening from 69 to 74 years of age was smaller than the effect of extending the screening from 50 to 45 or 40 years. Conclusion: In this study we have obtained a measure of the effect of breast cancer screening in terms of mortality and years of life gained. The Lee and Zelen mathematical models have been very useful for assessing the impact of different modalities of early detection on MR and YLG in Catalonia (Spain).
Resumo:
BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and a leading cause of death in younger women. METHODS: We analysed incidence, mortality and relative survival (RS) in women with BC aged 20-49 years at diagnosis, between 1996 and 2009 in Switzerland. Trends are reported as estimated annual percentage changes (EAPC). RESULTS: Our findings confirm a slight increase in the incidence of BC in younger Swiss women during the period 1996-2009. The increase was largest in women aged 20-39 years (EAPC 1.8%). Mortality decreased in both age groups with similar EAPCs. Survival was lowest among women 20-39 years (10-year RS 73.4%). We observed no notable differences in stage of disease at diagnosis that might explain these differences. CONCLUSIONS: The increased incidence and lower survival in younger women diagnosed with BC in Switzerland indicates possible differences in risk factors, tumour biology and treatment characteristics that require additional examination.
Resumo:
Background: Breast cancer (BC) causes more deaths than any other cancer among women in Catalonia. Early detection has contributed to the observed decline in BC mortality. However, there is debate on the optimal screening strategy. We performed an economic evaluation of 20 screening strategies taking into account the cost over time of screening and subsequent medical costs, including diagnostic confirmation, initial treatment, follow-up and advanced care. Methods: We used a probabilistic model to estimate the effect and costs over time of each scenario. The effect was measured as years of life (YL), quality-adjusted life years (QALY), and lives extended (LE). Costs of screening and treatment were obtained from the Early Detection Program and hospital databases of the IMAS-Hospital del Mar in Barcelona. The incremental cost-effectiveness ratio (ICER) was used to compare the relative costs and outcomes of different scenarios. Results: Strategies that start at ages 40 or 45 and end at 69 predominate when the effect is measured as YL or QALYs. Biennial strategies 50-69, 45-69 or annual 45-69, 40-69 and 40-74 were selected as cost-effective for both effect measures (YL or QALYs). The ICER increases considerably when moving from biennial to annual scenarios. Moving from no screening to biennial 50-69 years represented an ICER of 4,469€ per QALY. Conclusions: A reduced number of screening strategies have been selected for consideration by researchers, decision makers and policy planners. Mathematical models are useful to assess the impact and costs of BC screening in a specific geographical area.