946 resultados para System model
Resumo:
Dynamical properties of the U-238-U-238 system at the classical turning point, specifically the distance of closest approach, the relative orientations of the nuclei, and deformations have been studied at the sub-Coulomb energy of E(lab) = 6.07 MeV/nucleon using a classical dynamical model with a variable moment of inertia. Probability of favorable alignment for anomalous positron-electron pair emission through vacuum decay is calculated. The calculated small favorable alignment probability value of 0.116 is found to be enhanced by about 16% in comparison with the results of a similar study using a fixed moment of inertia as well as the results from a semiquantal calculation reported earlier.
Resumo:
The use of transposable elements (TEs) as genetic drive mechanisms was explored using Drosophila melanogaster as a model system. Alternative strategies, employing autonomous and nonautonomous P element constructs were compared for their efficiency in driving the ry(+) allele into populations homozygous for a ry(-) allele at the genomic rosy locus. Transformed flies were introduced at 1%, 5%, and 10% starting frequencies to establish a series of populations that were monitored over the course of 40 generations, using both phenotypic and molecular assays. The transposon-borne ry(+) marker allele spread rapidly in almost all populations when introduced at 5% and 10% seed frequencies, but 1% introductions frequently failed to become established. A similar initial rapid increase in frequency of the ry(+) transposon occurred in several control populations lacking a source of transposase. Constructs carrying ry(+) markers also increased to moderate frequencies in the absence of selection on the marker. The results of Southern and in situ hybridization studies indicated a strong inverse relationship between the degree of conservation of construct integrity and transposition frequency. These finding have relevance to possible future applications of transposons as genetic drive mechanisms.
Resumo:
An adaptive scheme is shown by the authors of the above paper (ibid. vol. 71, no. 2, pp. 275-276, Feb. 1983) for continuous time model reference adaptive systems (MRAS), where relays replace the usual multipliers in the existing MRAS. The commenter shows an error in the analysis of the hyperstability of the scheme, such that the validity of this configuration becomes an open question.
Resumo:
We show that the 2-matrix string model corresponds to a coupled system of 2 + 1-dimensional KP and modified KP ((m)KP2+1) integrable equations subject to a specific symmetry constraint. The latter together with the Miura-Konopelchenko map for (m)KP2+1 are the continuum incarnation of the matrix string equation. The (m)KP2+1 Miura and Backhand transformations are natural consequences of the underlying lattice structure. The constrained (m)KP2+1 system is equivalent to a 1 + 1-dimensional generalized KP-KdV hierarchy related to graded SL(3,1). We provide an explicit representation of this hierarchy, including the associated W(2,1)-algebra of the second Hamiltonian structure, in terms of free currents.
Resumo:
We consider the contributions of the exotic quarks and gauge bosons to the mass difference between the short- and the long-lived neutral kaon states in the SU(3)C×SU(3)L×U(1)N model. The lower bound MZ′∼14 TeV is obtained for the extra neutral gauge boson Z′0. Ranges for values of one of the exotic quark masses and quark mixing parameters are also presented.
Resumo:
This paper deals with the subject-matter of teaching immaterial issues like power system dynamics where the phenomena and events are not sense-perceptible. The dynamics of the power system are recognized as analogous to the dynamics of a simple mechanical pendulum taken into account the well-known classical model for the synchronous machine. It is shown that even for more sophisticated models including flux decay and Automatic Voltage Regulator the mechanical device can be taken as an analogous, since provided some considerations about variation and control of the pendulum length using certain control laws. The resulting mathematical model represents a mechanical system that can be built for use in laboratory teaching of power system dynamics. © 2010 Praise Worthy Prize S.r.l. - All rights reserved.
Resumo:
This paper presents a power system capacity expansion planning modelconsidering carbon emissions constraints. In addition to the traditionaltechnical and economical issues usually considered in the planning process, two environmental policies that consist on the taxation and the annual limitsof carbon dioxide (CO 2) emissions are considered. Furthermore, the gradualretirement of old inefficient generation plants has been included. The approachguarantees a cleaner electricity production in the expanded power system ata relatively low cost. The proposed model considers the transmission systemand is applied to a 4-region and 11-region power systems over a 20-yearplanning horizon. Results show practical investment decisions in terms of sustainability and costs.
Resumo:
This paper presents a mixed-integer quadratically-constrained programming (MIQCP) model to solve the distribution system expansion planning (DSEP) problem. The DSEP model considers the construction/reinforcement of substations, the construction/reconductoring of circuits, the allocation of fixed capacitors banks and the radial topology modification. As the DSEP problem is a very complex mixed-integer non-linear programming problem, it is convenient to reformulate it like a MIQCP problem; it is demonstrated that the proposed formulation represents the steady-state operation of a radial distribution system. The proposed MIQCP model is a convex formulation, which allows to find the optimal solution using optimization solvers. Test systems of 23 and 54 nodes and one real distribution system of 136 nodes were used to show the efficiency of the proposed model in comparison with other DSEP models available in the specialized literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We analyze new results on a magnetically levitated body (a block including a magnet whose bottom pole is set in such a way as to repel the upper pole of a magnetic base) excited by a non-ideal energy source (an unbalanced electric motor of limited power supply). These new results are related to the jump phenomena and increase of power required of such sources near resonance are manifestations of a non-ideal system and they are referred as the Sommerfeld effect, which emulates an energy sink. In this work, we also discuss control strategies to be applied to this system, in resonance conditions, in order to decrease its vibration amplitude and avoiding this apparent energy sink.
Resumo:
Usually we observe that Bio-physical systems or Bio-chemical systems are many a time based on nanoscale phenomenon in different host environments, which involve many particles can often not be solved explicitly. Instead a physicist, biologist or a chemist has to rely either on approximate or numerical methods. For a certain type of systems, called integrable in nature, there exist particular mathematical structures and symmetries which facilitate the exact and explicit description. Most integrable systems, we come across are low-dimensional, for instance, a one-dimensional chain of coupled atoms in DNA molecular system with a particular direction or exist as a vector in the environment. This theoretical research paper aims at bringing one of the pioneering ‘Reaction-Diffusion’ aspects of the DNA-plasma material system based on an integrable lattice model approach utilizing quantized functional algebras, to disseminate the new developments, initiate novel computational and design paradigms.