957 resultados para Syndrome de fatigue chronique
Resumo:
Low cycle fatigue behavior of an O+B2 alloy was evaluated at 650 degrees C in ambient atmosphere under fully reversed total axial strain controlled mode. Three different microstructures, namely equiaxed O plus aged B2 (fine O plates in B2 matrix), lenticular O laths plus aged B2 and a pancake composite microstructure comprising equiaxed alpha 2, lenticular O and aged B2, were selected to study the effect of microstructure on low cycle fatigue behavior in this class of alloys. Distinct well-defined trends were observed in the cyclic stress-strain response curves depending on the microstructure. The cyclic stress response was examined in terms of softening or hardening and correlated with microstructural features and dislocation behavior. Fatigue life was analyzed in terms of standard Coffin-Manson and Basquin plots and for all microstructures a prevailing elastic strain regime was identified, with a single slope for microstructures equiaxed and composite and a double slope for lenticular O laths. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and non-invasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.
Resumo:
This study was aimed at evaluating the static shear strength and fatigue properties of the newly developed refilled friction stir spot welded AA 6061-T6 joints. The keyhole, the process disadvantage of conventional friction stir spot welding, was refilled successfully, using an additional filler plate, with specially designed tools. Two different tool profiles, namely, convex and concave, were used for the refilling process. Sound and defect free joints were obtained by the refilling process. Joints refilled with convex tools showed better static shear strength than those with the concave ones. The variation of microhardness in different regions of the weld was analysed. Fatigue tests were conducted on the lap shear specimens at a stress ratio of R=0.1. The optical micrographs of the welds after fatigue failure in both the conventional and refilled processes were examined to study the fatigue crack propagation and failure modes.
Resumo:
Purpose: Weill-Marchesani syndrome (WMS) is a rare connective tissue disorder, characterized by short stature, micro-spherophakic lens, and stubby hands and feet (brachydactyly). WMS is caused by mutations in the FBN1, ADAMTS10, and LTBP2 genes. Mutations in the LTBP2 and ADAMTS17 genes cause a WMS-like syndrome, in which the affected individuals show major features of WMS but do not display brachydactyly and joint stiffness. The main purpose of our study was to determine the genetic cause of WMS in an Indian family. Methods: Whole exome sequencing (WES) was used to identify the genetic cause of WMS in the family. The cosegregation of the mutation was determined with Sanger sequencing. Reverse transcription (RT)-PCR analysis was used to assess the effect of a splice-site mutation on splicing of the ADAMTS17 transcript. Results: The WES analysis identified a homozygous novel splice-site mutation c.873+1G>T in a known WMS-like syndrome gene, ADAMTS17, in the family. RT-PCR analysis in the patient showed that exon 5 was skipped, which resulted in the deletion of 28 amino acids in the ADAMTS17 protein. Conclusions: The mutation in the WMS-like syndrome gene ADAMTS17 also causes WMS in an Indian family. The present study will be helpful in genetic diagnosis of this family and increases the number of mutations of this gene to six.
Resumo:
Background: Coats plus syndrome is an autosomal recessive, pleiotropic, multisystem disorder characterized by retinal telangiectasia and exudates, intracranial calcification with leukoencephalopathy and brain cysts, osteopenia with predisposition to fractures, bone marrow suppression, gastrointestinal bleeding and portal hypertension. It is caused by compound heterozygous mutations in the CTC1 gene. Case presentation: We encountered a case of an eight-year old boy from an Indian family with manifestations of Coats plus syndrome along with an unusual occurrence of dextrocardia and situs inversus. Targeted resequencing of the CTC1 gene as well as whole exome sequencing (WES) were conducted in this family to identify the causal variations. The identified candidate variations were screened in ethnicity matched healthy controls. The effect of CTC1 variation on telomere length was assessed using Southern blot. A novel homozygous missense mutation c.1451A > C (p.H484P) in exon 9 of the CTC1 gene and a rare 3'UTR known dbSNP variation (c.*556 T > C) in HES7 were identified as the plausible candidates associated with this complex phenotype of Coats plus and dextrocardia. This CTC1 variation was absent in the controls and we also observed a reduced telomere length in the affected individual's DNA, suggesting its likely pathogenic nature. The reported p.H484P mutation is located in the N-terminal 700 amino acid regionthat is important for the binding of CTC1 to ssDNA through its two OB domains. WES data also showed a rare homozygous missense variation in the TEK gene in the affected individual. Both HES7 and TEK are targets of the Notch signaling pathway. Conclusions: This is the first report of a genetically confirmed case of Coats plus syndrome from India. By means of WES, the genetic variations in this family with unique and rare complex phenotype could be traced effectively. We speculate the important role of Notch signaling in this complex phenotypic presentation of Coats plus syndrome and dextrocardia. The present finding will be useful for genetic diagnosis and carrier detection in the family and for other patients with similar disease manifestations.
Resumo:
A closed-form expression for the dual of dissipation potential is derived within the framework of irreversible thermodynamics using the principles of dimensional analysis and self-similarity. Through this potential, a damage evolution law is proposed for concrete under fatigue loading using the concepts of damage mechanics in conjunction with fracture mechanics. The proposed law is used to compute damage in a volume element when a member is subjected to fatigue loading. The evolution of damage from microcracking to macrocracking of the entire member is captured through a series of volume elements failing one after the other. The number of loading cycles to failure of the member is obtained as the summation of number of cycles to failure for each individual volume element. A parametric study is conducted to determine the effect of the size of the volume element on the model's prediction of fatigue life. A global damage index is also defined, and the residual moment carrying capacity of damaged beams is evaluated. Through a deterministic sensitivity analysis, it is found that the load range and maximum aggregate size are the most influencing parameters on the fatigue life of a plain concrete beam.
Resumo:
Interfacial properties of Shape Memory Alloy (SMA) reinforced polymer matrix composites can be enhanced by improving the interfacial bonding. This paper focuses on studying the interfacial stresses developed in the SMA-epoxy interface due to various laser shot penning conditions. Fiber-pull test-setup is designed to understand the role of mechanical bias stress cycling and thermal actuation cycling. Phase transformation is tracked over mechanical and thermal fatigue cycles. A micromechanics based model developed earlier based on shear lag in SMA and energy based consistent homogenization is extended here to incorporate the stress-temperature phase diagram parameters for modeling fatigue.
Resumo:
Damage mechanisms in unidirectional (UD) and bi-directional (BD) woven carbon fiber reinforced polymer (CFRP) laminates subjected to four point flexure, both in static and fatigue loadings, were studied. The damage progression in composites was monitored by observing the slopes of the load vs. deflection data that represent the stiffness of the given specimen geometry over a number of cycles. It was observed that the unidirectional composites exhibit gradual loss in stiffness whereas the bidirectional woven composites show a relatively quicker loss during stage II of fatigue damage progression. Both, the static and the fatigue failures in unidirectional carbon fiber reinforced polymer composites originates due to generation of cracks on compression face while in bidirectional woven composites the damage ensues from both the compression and the tensile faces. These observations are supported by a detailed fractographic analysis.
Resumo:
An energy approach within the framework of thermodynamics is used to model the fatigue process in plain concrete. Fatigue crack growth is an irreversible process associated with an irreversible entropy gain. A closed-form expression for entropy generated during fatigue in terms of energy dissipated is derived using principles of dimensional analysis and self-similarity. An increase in compliance is considered as a measure of damage accumulated during fatigue. The entropy at final fatigue failure is shown to be independent of loading and geometry and is proposed as a material property. A relationship between energy dissipated and number of cycles of fatigue loading is obtained. (C) 2015 American Society of Civil Engineers.
Resumo:
Fatigue damage in concrete is characterized by the simultaneous presence of micro and macrocracks. The theory of fracture mechanics conveniently handles the propagation of macrocracks, whereas damage mechanics precisely describes the state of microcracking. This paper provides a platform to correlate fracture mechanics and damage mechanics theories through an energy equivalence within a thermodynamic framework by equating the energy dissipated according to each theory. Through this correlation, damage corresponding to a given crack length could be obtained, and alternatively a discrete crack could be transformed into an equivalent damage zone. The results are validated using available experimental data on concrete fatigue including stiffness degradation and acoustic emission. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Fatigue damage in concrete is characterized by the simultaneous presence of micro and macrocracics. The theory of fracture mechanics conveniently handles the propagation of macrocracks, whereas damage mechanics precisely describes the state of microcracking. This paper provides a platform to correlate fracture mechanics and damage mechanics theories through an energy equivalence within a thermodynamic framework by equating the energy dissipated according to each theory. Through this correlation, damage corresponding to a given crack length could be obtained, and alternatively a discrete crack could be transformed into an equivalent damage zone. The results are validated using available experimental data on concrete fatigue including stiffness degradation and acoustic emission. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The evolution of dispersed short-fatigue-cracks is analysed based on the equilibrium of crack-number-density (CND). By separating the mean value and the stochastic fluctuation of local CND, the equilibrium equation of overall CND is derived. Comparing with the mean-field equilibrium equation, the equilibrium equation of overall CND has different forms in the expression of crack-nucleation-rate or crack-growth-rate. The simulation results are compared with experimental measurements showing the stochastic analyses provide consistent tendency with experiments. The discrepancy in simulation results between overall CND and mean-field CND is discussed.
Resumo:
Collective damage of short fatigue cracks was analyzed in the light of equilibrium of crack numerical density. With the estimation of crack growth rate and crack nucleation rate, the solution of the equilibrium equation was studied to reveal the distinct feature of saturation distribution for crack numerical density. The critical time that characterized the transition of short and long-crack regimes was estimated, in which the influences of grain size and grain-boundary obstacle effect were investigated. Furthermore, the total number of cracks and the first order of damage moment were discussed.
Resumo:
Stochastic characteristics prevail in the process of short fatigue crack progression. This paper presents a method taking into account the balance of crack number density to describe the stochastic behaviour of short crack collective evolution. The results from the simulation illustrate the stochastic development of short cracks. The experiments on two types of steels show the random distribution for collective short cracks with the number of cracks and the maximum crack length as a function of different locations on specimen surface. The experiments also give the variation of total number of short cracks with fatigue cycles. The test results are consistent with numerical simulations.
Resumo:
To investigate the low temperature fatigue crack propagation behavior of offshore structural steel A131 under random ice loading, three ice failure modes that are commonly present in the Bohai Gulf are simulated according to the vibration stress responses induced by real ice loading. The test data are processed by a universal software FCPUSL developed on the basis of the theory of fatigue crack propagation and statistics. The fundamental parameter controlling the fatigue crack propagation induced by random ice loading is determined to be the amplitude root mean square stress intensity factor K-arm. The test results are presented on the crack propagation diagram where the crack growth rate da/dN is described as the function of K-arm. It is evident that the ice failure modes have great influence on the fatigue crack propagation behavior of the steel in ice-induced vibration. However, some of the experimental phenomena and test results are hard to be physically explained at present. The work in this paper is an initial attempt to investigate the cause of collapse of offshore structures due to ice loading.