955 resultados para Swimming pool
Resumo:
Nitric oxide (NO) is an atypical neurotransmitter that has been related to the pathophysiology of major depression disorder. Increased plasma NO levels have been reported in depressed and suicidal patients. Inhibition of neuronial nitric oxide synthase (nNOS), on the other hand, induces antidepressant effects in clinical and pre-clinical trials. The mechanisms responsible for the antidepressant-like effects of nNOS inhibitors, however, are not completely understood. In this study, genomic and proteomic analyses were used to investigate the effects of the preferential nNOS inhibitor 7-nitroindazole (7-NI) on changes in global gene and protein expression in the hippocampus of rats submitted to forced swimming test (FST). Chronic treatment (14 days, i.p.) with imipramine (15 mg/kg daily) or 7-NI (60 mg/kg daily) significantly reduced immobility in the FST. Saturation curves for Serial analysis of gene expression libraries showed that the hippocampus of animals submitted to FST presented a lower number of expressed genes compared to non-FST stressed groups. Imipramine, but not 7-NI, reverted this effect. GeneGo analyses revealed that genes related to oxidative phosphorylation, apoptosis and survival controlled by HTR1A signaling and cytoskeleton remodeling controlled by Rho GTPases were significantly changed by FST. 7-NI prevented this effect. In addition, 7-NI treatment changed the expression of genes related to transcription in the cAMP response element-binding pathway. Therefore, this study suggests that changes in oxidative stress and neuroplastic processes could be involved in the antidepressant-like effects induced by nNOS inhibition.
Resumo:
DA SILVA, N. D. JR, T. FERNANDES, U. P. R. SOCI, A. W. A. MONTEIRO, M. I. PHILLIPS, and E. M. DE OLIVEIRA. Swimming Training in Rats Increases Cardiac MicroRNA-126 Expression and Angiogenesis. Med. Sci. Sports Exerc., Vol. 44, No. 8, pp. 1453-1462, 2012. Purpose: MicroRNA (miRNA)-126 is angiogenic and has two validated targets: Sprouty-related protein 1 (Spred-1) and phosphoinositol-3 kinase regulatory subunit 2 (PI3KR2), negative regulators of angiogenesis by VEGF pathway inhibition. We investigated the role of swimming training on cardiac miRNA-126 expression related to angiogenesis. Methods: Female Wistar rats were assigned to three groups: sedentary (S), training 1 (T1, moderate volume), and training 2 (T2, high volume). T1 consisted of 60 min.d(-1) of swimming, five times per week for 10 wk with 5% body overload. T2 consisted of the same protocol of T1 until the eighth week; in the ninth week, rats trained for two times a day, and in the 10th week, rats trained for three times a day. MiRNA and PI3KR2 gene expression analysis was performed by real-time polymerase chain reaction in heart muscle. We assessed markers of training, the cardiac capillary-fiber ratio, cardiac protein expression of VEGF, Spred-1, Raf-1/ERK 1/2, and PI3K/Akt/eNOS. Results: The cardiac capillary-fiber ratio increased in T1 (58%) and T2 (101%) compared with S. VEGF protein expression was increased 42% in T1 and 108% in T2. Cardiac miRNA-126 expression increased 26% (T1) and 42% (T2) compared with S, correlated with angiogenesis. The miRNA-126 target Spred-1 protein level decreased 41% (T1) and 39% (T2), which consequently favored an increase in angiogenic signaling pathway Raf-1/ERK 1/2. On the other hand, the gene expression of PI3KR2, the other miRNA-126 target, was reduced 39% (T1) and 78% (T2), and there was an increase in protein expression of components of the PI3K/Akt/eNOS signaling pathway in the trained groups. Conclusions: This study showed that aerobic training promotes an increase in the expression of miRNA-126 and that this may be related to exercise-induced cardiac angiogenesis, by indirect regulation of the VEGF pathway and direct regulation of its targets that converged in an increase in angiogenic pathways, such as MAPK and PI3K/Akt/eNOS.
Resumo:
Aspergillus phoenicis is an interesting heat tolerant fungus that can synthesize enzymes with several applications in the food industry due to its great hydrolytic potential. In this work, the fungus produced high enzymatic levels when cultivated on inexpensive culture media consisting of flakes from different origins such as cassava flour, wheat fibre, crushed soybean, agro-industrial wastes, starch, glucose or maltose. Several enzymatic systems were produced from these carbon sources, but amylase was the most evident, followed by pectinase and xylanase. Traces of CMCases, avicelase, lipase, β-xylosidase, β-glucosidase and α-glucosidase activities were also detected. Amylases were produced on rye flakes, starch, oat flakes, corn flakes, cassava flour and wheat fibre. Significant amylolytic levels were produced in the culture medium with glucose or when this sugar was exhausted, suggesting an enzyme in the constitutive form. Cassava flour, rye, oats, barley and corn flakes were also used as substrates in the hydrolytic reactions, aiming to verify the liberation potential of reducing sugars. Corn flakes induced greater liberation of reducing sugars as compared to the others. Thin layer chromatography of the reaction end products showed that the hydrolysis of cassava flour liberated maltooligosaccharides, but cassava flour and corn, rye, oats and barley flakes were hydrolyzed to glucose. These results suggested the presence of glucoamylase and α-amylase as part of the enzymatic pool of A. phoencis.
Resumo:
During the course of my Ph.D. in the laboratories directed by Prof. Alfredo Ricci at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, I was involved in the study and the application of a number of organocatalytic systems, all coming from the natural chiral pool. The first part of this thesis will be devoted to new homogeneous organocatalytic reactions promoted by Cinchona alkaloid-based organocatalysts. Quinine based catalysts were found to be a very effective catalyst for Diels-Alder reactions involving 3-vinylindoles. Excellent results in terms of yields and enantioselectivities were achieved, outlining also a remarkable organocatalytic operational mode mimicking enzymatic catalysis. The same reaction with 2-vinylindoles showed a completely different behaviour resulting in an unusual resolution-type process. The asymmetric formal [3+2] cycloaddition with in situ generated N-carbamoyl nitrones using Cinchona-derived quaternary ammonium salts as versatile catalysts under phase transfer conditions, outlines another application in organocatalysis of this class of alkaloids. During the seven months stage in the Prof. Helma Wennemers’ group at the Department of Chemistry of the University of Basel (Switzerland) I have been involved in organocatalysis promoted by oligopeptides. My contribution regarded the 1,4-addition reaction of aldehydes to nitroolefins. In the work performed at the Department of Organic Chemistry “A. Mangini” of the University of Bologna, in collaboration with the ‘Institut Charles Gerhardt-Montpellier, of Montpellier (France) the possibility of performing for the first time heterogeneous organocatalysis by using a natural polysaccharide biopolymer as the source of chirality was disclosed. With chitosan, derived from deacetylation of chitin, a highly enantioselective heterogeneous organocatalytic aldol reaction could be performed. The use of an eco-friendly medium such as water, the recyclability of the catalytic specie and the renewable nature of the polysaccharide are assets of this new approach in organocatalysis and open interesting perspectives for the use of biopolymers.
Resumo:
In the present work, a multi physics simulation of an innovative safety system for light water nuclear reactor is performed, with the aim to increase the reliability of its main decay heat removal system. The system studied, denoted by the acronym PERSEO (in Pool Energy Removal System for Emergency Operation) is able to remove the decay power from the primary side of the light water nuclear reactor through a heat suppression pool. The experimental facility, located at SIET laboratories (PIACENZA), is an evolution of the Thermal Valve concept where the triggering valve is installed liquid side, on a line connecting two pools at the bottom. During the normal operation, the valve is closed, while in emergency conditions it opens, the heat exchanger is flooded with consequent heat transfer from the primary side to the pool side. In order to verify the correct system behavior during long term accidental transient, two main experimental PERSEO tests are analyzed. For this purpose, a coupling between the mono dimensional system code CATHARE, which reproduces the system scale behavior, with a three-dimensional CFD code NEPTUNE CFD, allowing a full investigation of the pools and the injector, is implemented. The coupling between the two codes is realized through the boundary conditions. In a first analysis, the facility is simulated by the system code CATHARE V2.5 to validate the results with the experimental data. The comparison of the numerical results obtained shows a different void distribution during the boiling conditions inside the heat suppression pool for the two cases of single nodalization and three volume nodalization scheme of the pool. Finaly, to improve the investigation capability of the void distribution inside the pool and the temperature stratification phenomena below the injector, a two and three dimensional CFD models with a simplified geometry of the system are adopted.
Resumo:
The SWISSspine registry is the first mandatory registry of its kind in the history of Swiss orthopaedics and it follows the principle of "coverage with evidence development". Its goal is the generation of evidence for a decision by the Swiss federal office of health about reimbursement of the concerned technologies and treatments by the basic health insurance of Switzerland. Recently, developed and clinically implemented, the Dynardi total disc arthroplasty (TDA) accounted for 10% of the implanted lumbar TDAs in the registry. We compared the outcomes of patients treated with Dynardi to those of the recipients of the other TDAs in the registry. Between March 2005 and October 2009, 483 patients with single-level TDA were documented in the registry. The 52 patients with a single Dynardi lumbar disc prosthesis implanted by two surgeons (CE and OS) were compared to the 431 patients who received one of the other prostheses. Data were collected in a prospective, observational multicenter mode. Surgery, implant, 3-month, 1-year, and 2-year follow-up forms as well as comorbidity, NASS and EQ-5D questionnaires were collected. For statistical analyses, the Wilcoxon signed-rank test and chi-square test were used. Multivariate regression analyses were also performed. Significant and clinically relevant reduction of low back pain and leg pain as well as improvement in quality of life was seen in both groups (P < 0.001 postop vs. preop). There were no inter-group differences regarding postoperative pain levels, intraoperative and follow-up complications or revision procedures with a new hospitalization. However, significantly more Dynardi patients achieved a minimum clinically relevant low back pain alleviation of 18 VAS points and a quality of life improvement of 0.25 EQ-5D points. The patients with Dynardi prosthesis showed a similar outcome to patients receiving the other TDAs in terms of postoperative low back and leg pain, complications, and revision procedures. A higher likelihood for achieving a minimum clinically relevant improvement of low back pain and quality of life in Dynardi patients was observed. This difference might be due to the large number of surgeons using other TDAs compared to only two surgeons using the Dynardi TDA, with corresponding variations in patient selection, patient-physician interaction and other factors, which cannot be assessed in a registry study.
Resumo:
Sperm competition exerts strong selection on males to produce spermatozoa with an optimal morphology that maximizes their fertilization success. Long sperm were first suggested to be favored because they should swim faster. However, studies that investigated the relationship between sperm length and sperm competitive ability or sperm swimming velocity yielded contradictory results. More recently, ratios of the different sections of a spermatozoon (the head, midpiece, and flagellum) were suggested to be more crucial in determining swimming velocity. Additionally, sperm ability to remain and survive in the female storage organs may also influence fertilization success, so that optimal sperm morphology may rather maximize sperm longevity than velocity. In this study, we investigated how sperm morphology is related to sperm velocity and sperm longevity in the house sparrow Passer domesticus. Sperm velocity was found to be correlated with head/flagellum ratio. Sperm with small heads relative to their flagellum showed higher swimming velocity. Additionally, shorter sperm were found to live longer. Finally, we found sperm morphological traits to vary substantially within males and the head/flagellum ratio to be unrelated to total sperm length. We discuss the hypothesis that the substantial within-male variation in sperm morphology reflects a male strategy to produce a diversity of sperm from long, fast-swimming to short, long-living sperm to maximize their fertilization success in a context of sperm competition.
Resumo:
Releasing captive-bred fish into natural environments (stocking) is common in fisheries worldwide. Although stocking is believed to have a positive effect on fish abundance over the short term, little is known about the long-term consequences of recurrent stocking and its influence on natural populations. In fact, there are growing concerns that genetically maladapted captive-bred fish can eventually reduce the abundance of natural population. In this study, we develop a simple model to quantitatively investigate the condition under which recurrent stocking has long-term effects on the natural population. Using a population dynamics model that takes into account a density-dependent recruitment, a gene responsible for the fitness difference between wild and captive-bred fish, and hybridization between them, we show that there is little or no contribution of recurrent stocking to the stock enhancement without a replacement of the wild gene pool by the captive-bred gene pool. The model further predicted that stocking of an intermediate level causes a reduction, rather than enhancement, of population size over the long term. The population decline due to stocking was attributed to the fitness disadvantage of captive-bred fish and strong overcompensation at recruitment stage. These results suggest that it would be difficult to simultaneously attain population size recovery and conservation of the local gene pool when captive-bred fish have fitness disadvantage in the wild, although caution is needed when applying the predictions from the simplified model to a specific species or population.