843 resultados para Structural behavior of thin plates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 93 K X-ray crystal structure of tris(ethane-1,2-diamine)zinc(II) dinitrate is reported. As predicted by the spectroscopic studies of other workers, there is a reversible phase transition of the structure at low temperature. We have determined this temperature to be 143 K. The structure at this temperature and below resembles that of the room temperature structure, except the crystallographic D-3 symmetry of the complex cation (296 K) is lowered to C-2 ( below 144 K) by subtle changes in cation-anion hydrogen bonding. No change in the conformation of the cation or its bond lengths and angles was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part replacement and repair is needed in structures with moving parts because of scratchability and wear. In spite of some accumulation of experimental evidence, scratch resistance is still not well understood. We have applied molecular dynamics to study scratch resistance of amorphous polymeric materials through computer simulations. As a first approach, a coarse grain model was created for high density polyethylene at the mesoscale. We have also extended the traditional approach and used real units rather than reduced units (to our knowledge, for the first time), which enable an improved quantification of simulation results. The obtained results include analysis of penetration depth, residual depth and recovery percentage related to indenter force and size. Our results show there is a clear effect from these parameters on the tribological properties. We also discuss a "crooked smile" effect on the scratched surface and the reasons for its appearance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the critical indices β, γ , and ν for a three-dimensional (3D) hardcore cylinder composite system with short-range interaction have been obtained. In contrast to the 2D stick system and the 3D hardcore cylinder system, the determined critical exponents do not belong to the same universality class as the lattice percolation,although they obey the common hyperscaling relation for a 3D system. It is observed that the value of the correlation length exponent is compatible with the predictions of the mean field theory. It is also shown that, by using the Alexander-Orbach conjuncture, the relation between the conductivity and the correlation length critical exponents has a typical value for a 3D lattice system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymers have become the reference material for high reliability and performance applications. In this work, a multi-scale approach is proposed to investigate the mechanical properties of polymeric based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, a coupling of a Finite Element Method (FEM) and Molecular Dynamics (MD) modeling in an iterative procedure was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, the previous described multi-scale method computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multi-scale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have employed molecular dynamics simulations to study the behavior of virtual polymeric materials under an applied uniaxial tensile load. Through computer simulations, one can obtain experimentally inaccessible information about phenomena taking place at the molecular and microscopic levels. Not only can the global material response be monitored and characterized along time, but the response of macromolecular chains can be followed independently if desired. The computer-generated materials were created by emulating the step-wise polymerization, resulting in self-avoiding chains in 3D with controlled degree of orientation along a certain axis. These materials represent a simplified model of the lamellar structure of semi-crystalline polymers,being comprised of an amorphous region surrounded by two crystalline lamellar regions. For the simulations, a series of materials were created, varying i) the lamella thickness, ii) the amorphous region thickness, iii) the preferential chain orientation, and iv) the degree of packing of the amorphous region. Simulation results indicate that the lamella thickness has the strongest influence on the mechanical properties of the lamella-amorphous structure, which is in agreement with experimental data. The other morphological parameters also affect the mechanical response, but to a smaller degree. This research follows previous simulation work on the crack formation and propagation phenomena, deformation mechanisms at the nanoscale, and the influence of the loading conditions on the material response. Computer simulations can improve the fundamental understanding about the phenomena responsible for the behavior of polymeric materials, and will eventually lead to the design of knowledge-based materials with improved properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics simulations were employed to analyze the mechanical properties of polymer-based nanocomposites with varying nanofiber network parameters. The study was focused on nanofiber aspect ratio, concentration and initial orientation. The reinforcing phase affects the behavior of the polymeric nanocomposite. Simulations have shown that the fiber concentration has a significant effect on the properties, with higher loadings resulting in higher stress levels and higher stiffness, matching the general behavior from experimental knowledge in this field. The results also indicate that, within the studied range, the observed effect of the aspect ratio and initial orientation is smaller than that of the concentration, and that these two parameters are interrelated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymeric materials have become the reference material for high reliability and performance applications. However, their performance in service conditions is difficult to predict, due in large part to their inherent complex morphology, which leads to non-linear and anisotropic behavior, highly dependent on the thermomechanical environment under which it is processed. In this work, a multiscale approach is proposed to investigate the mechanical properties of polymeric-based material under strain. To achieve a better understanding of phenomena occurring at the smaller scales, the coupling of a finite element method (FEM) and molecular dynamics (MD) modeling, in an iterative procedure, was employed, enabling the prediction of the macroscopic constitutive response. As the mechanical response can be related to the local microstructure, which in turn depends on the nano-scale structure, this multiscale approach computes the stress-strain relationship at every analysis point of the macro-structure by detailed modeling of the underlying micro- and meso-scale deformation phenomena. The proposed multiscale approach can enable prediction of properties at the macroscale while taking into consideration phenomena that occur at the mesoscale, thus offering an increased potential accuracy compared to traditional methods.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The invasive tendency of Psychodopygus intermedius in the home environment, observed initially by Forattini et al. (1976), has now been confirmed by the demonstration of its high endophilic ability and by the use of human residences for shelter. Populations such as Lutzomyia migonei and Pintomyia fischeri were also present in that environment, though their low densities registered during this investigation could be an indication of their poor ability to overcome the barriers raised by the artificial environment. An objective epidemiological analysis based on the variables here given showed that human infection takes place in the extraforest environment, and the principal vectorial function falls, without doubt, on P. intermedius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laser-assisted chemical vapour deposition (LCVD) has been extensively studied in the last two decades. A vast range of applications encompass various areas such as microelectronics, micromechanics, microelectromechanics and integrated optics, and a variety of metals, semiconductors and insulators have been grown by LCVD. In this article, we review briefly the LCVD process and present two case studies of thin film deposition related to laser thermal excitation (e.g., boron carbide) and non-thermal excitation (e.g., CrO(2)) of the gas phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we investigate the ageing of acid cleaned femtosecond laser textured < 100 > silicon surfaces. Changes in the surface structure and chemistry were analysed by Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), in order to explain the variation with time of the water contact angles of the laser textured surfaces. It is shown that highly hydrophobic silicon surfaces are obtained immediately after laser texturing and cleaning with acid solutions (water contact angle >120 degrees). However these surfaces are not stable and ageing leads to a decrease of the water contact angle which reaches a value of 80 degrees. XPS analysis of the surfaces shows that the growth of the native oxide layer is most probably responsible for this behavior. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reactions of FeCl2 center dot 2H(2)O and 2,2,2-tris(1-pyrazolyl) ethanol HOCH2C(pz)(3) (1) (pz = pyrazolyl) afford [Fe{HOCH2C(pz)(3)}(2)][FeCl4]Cl (2), [Fe{HOCH2C(pz)(3)}(2)](2)[Fe2OCl6](Cl)(2)center dot 4H(2)O (3 center dot 4H(2)O), [Fe{HOCH2C(pz)(3)}(2)] [FeCl{HOCH2C(pz)(3)}(H2O)(2)](2)(Cl)(4) (4) or [Fe{HOCH2C(pz)(3)}(2)]Cl-2 (5), depending on the experimental conditions. Compounds 1-5 were isolated as air-stable crystalline solids and fully characterized, including (1-4) by single-crystal X-ray diffraction analyses. The latter technique revealed strong intermolecular H-bonds involving the OH group of the scorpionate 2 and 3 giving rise to 1D chains which, in 3, are further expanded to a 2D network with intercalated infinite and almost plane chains of H-interacting water molecules. In 4, intermolecular pi center dot center dot center dot pi interactions involving the pyrazolyl rings are relevant. Complexes 2-5 display a high solubility in water (S-25 degrees C ca. 10-12 mg mL(-1)), a favourable feature towards their application as catalysts (or catalyst precursors) for the peroxidative oxidation of cyclo-hexane to cyclohexanol and cyclohexanone, with aqueous H2O2/MeCN, at room temperature (TON values up to ca. 385). (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eucalyptus globulus heartwood, sapwood and their delignified samples by kraft pulping at 130, 150 and 170 degrees C along time were characterized in respect to total carbohydrates by Py-GC/MS(FID). No significant differences between heartwood and sapwood were found in relation to pyrolysis products and composition. The main wood carbohydrate derived pyrolysis compounds were levoglucosan (25.1%), hydroxyacetaldehyde (12.5%), 2-oxo-propanal (10.3%) and acetic acid (8.7%). Levoglucosan decreased during the early stages of delignification and increased during the bulk and residual phases. Acetic acid decreased hydroxyacetaldehyde and 2-oxo-propanal increased, and 2-furaldehyde and hydroxypropanone remained almost constant during delignification. The C/L ratio was 3.2 in wood and remained rather constant in the first pulping periods until a loss of 15-25% in carbohydrate and 60% in lignin. Afterwards it increased sharply until 44 that correspond to the removal of 25-35% of carbohydrates and 95% of lignin. The pulping reactive selectivity to lignin vs. polysaccharides was the same for sapwood and heartwood. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

6th Spanish-Portuguese-Japanese Organic Chemistry Symposium, Lisboa, de 18 a 20 de Julho de 2012 (Poster Communication).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Co‐Re superlattices were prepared with nominal periodicities of 65–67 Å and varying bilayer composition. The structural characterization was made by x‐ray diffraction and Rutherford backscattering spectrometry (RBS). First, second, and third order satellites are observed in the x‐ray diffractogram at 2θ values and with intensities close to those predicted by simulation. This confirms the coherence of the superlattice. RBS measurements combined with RUMP simulations give information on interface sharpness and the absolute thicknesses of the Co and Re layers. Discrepancies between the experimental and simulated diffractograms are found for Co thicknesses below 18 Å.