849 resultados para Stress and Work
Resumo:
Chronic myeloid leukemia (CML), a myeloproliferative disorder, represents approximately 15-20% of all adult leukemia. The development of CML is clearly linked to the constitutively active protein-tyrosine kinase BCR-ABL, which is encoded by BCR-ABL fusion gene as the result of chromosome 9/22 translocation (Philadelphia chromosome). Previous studies have demonstrated that oxidative stress-associated genetic, metabolic and biological alterations contribute to CML cell survival and drug refractory. Mitochondria and NAD(P)H oxidase (NOX) are the major sources of BCR-ABL-induced cellular reactive oxygen species (ROS) production. However, it is still unknown how CML cells maintain the altered redox status, while escaping from the persistent oxidative stress-induced cell death. Therefore, elucidation of the mechanisms by which CML cells cope with oxidative stress will provide new insights into CML leukemogenesis. The major goal of this study is to identify the survival factors protecting CML cells against oxidative stress and develop novel therapeutic strategies to overcome drug resistance. Several experimental models were used to test CML cell redox status and cellular sensitivity to oxidative stress, including BCR-ABL inducible cell lines, BCR-ABL stably transformed cell lines and BCR-ABL-expressing CML blast crisis cells with differential BCL-XL/BCL-2 expressions. Additionally, an artificial CML cell model with heterogenic BCL-XL/BCL-2 expression was established to assess the correlation between differential survival factor expression patterns and cell sensitivity to Imatinib and oxidative stress. In this study, BCL-XL and GSH have been identified as the major survival factors responsive to BCR-ABL-promoted cellular oxidative stress and play a dominant role in regulating the threshold of oxidative stress-induced apoptosis. Cell survival factors BCL-XL and BCL-2 differentially protect mitochondria under oxidative stress. BCL-XL is an essential survival factor in preventing excessive ROS-induced cell death while BCL-2 seems to play a relatively minor role. Furthermore, the redox modulating reagent β-phenethyl isothiocyanate (PEITC) has been found to efficiently deplete GSH and induce potent cell killing effects in drug-resistant CML cells. Combination of PEITC with BCL-XL/BCL2 inhibitor ABT737 or suppression of BCL-XL by BCR-ABL inhibitor Gleevec dramatically sensitizes CML cells to apoptosis. These results have suggested that elevation of BCL-XL and cellular GSH are important for the development of CML, and that redox-directed therapy is worthy of further clinical investigations in CML.
Resumo:
This cross-sectional analysis of the data from the Third National Health and Nutrition Examination Survey was conducted to determine the prevalence and determinants of asthma and wheezing among US adults, and to identify the occupations and industries at high risk of developing work-related asthma and work-related wheezing. Separate logistic models were developed for physician-diagnosed asthma (MD asthma), wheezing in the previous 12 months (wheezing), work-related asthma and work-related wheezing. Major risk factors including demographic, socioeconomic, indoor air quality, allergy, and other characteristics were analyzed. The prevalence of lifetime MD asthma was 7.7% and the prevalence of wheezing was 17.2%. Mexican-Americans exhibited the lowest prevalence of MD asthma (4.8%; 95% confidence interval (CI): 4.2, 5.4) when compared to other race-ethnic groups. The prevalence of MD asthma or wheezing did not vary by gender. Multiple logistic regression analysis showed that Mexican-Americans were less likely to develop MD asthma (adjusted odds ratio (ORa) = 0.64, 95%CI: 0.45, 0.90) and wheezing (ORa = 0.55, 95%CI: 0.44, 0.69) when compared to non-Hispanic whites. Low education level, current and past smoking status, pet ownership, lifetime diagnosis of physician-diagnosed hay fever and obesity were all significantly associated with MD asthma and wheezing. No significant effect of indoor air pollutants on asthma and wheezing was observed in this study. The prevalence of work-related asthma was 3.70% (95%CI: 2.88, 4.52) and the prevalence of work-related wheezing was 11.46% (95%CI: 9.87, 13.05). The major occupations identified at risk of developing work-related asthma and wheezing were cleaners; farm and agriculture related occupations; entertainment related occupations; protective service occupations; construction; mechanics and repairers; textile; fabricators and assemblers; other transportation and material moving occupations; freight, stock and material movers; motor vehicle operators; and equipment cleaners. The population attributable risk for work-related asthma and wheeze were 26% and 27% respectively. The major industries identified at risk of work-related asthma and wheeze include entertainment related industry; agriculture, forestry and fishing; construction; electrical machinery; repair services; and lodging places. The population attributable risk for work-related asthma was 36.5% and work-related wheezing was 28.5% for industries. Asthma remains an important public health issue in the US and in the other regions of the world. ^
Resumo:
Permeability measured on three samples in a triaxial cell under effective confining pressure from 0.2 to 2.5 MPa ranges from 10**-18 to 10**-19 m**2. Overall, results indicate that permeability decreases with effective confining pressure up to 1.5 MPa; however, measurements at low effective pressure are too dispersed to yield a precise general relationship between permeability and pressure. When the effective pressure is increased from 1.5 to 2.5 MPa, permeability is roughly constant (~1-4 x 10**-19 m**2). Samples deformed in the triaxial cell developed slickenlined fractures, and permeability measurements were performed before and after failure. A permeability increase is observed when the sample fails under low effective confining pressure (0.2 MPa), but not under effective pressure corresponding to the overburden stress. Under isotropic stress conditions, permeability decrease related to fracture closure occurs at a relatively high effective pressure of ~1.5 MPa. Coefficients of friction on the fractures formed in the triaxial cell are ~0.4.
Resumo:
Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for 8 months at two temperatures (ambient 12 °C and elevated 15 °C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 °C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species.