941 resultados para Stratospheric circulation
Resumo:
[ 1] We have used a fully coupled chemistry-climate model (CCM), which generates its own wind and temperature quasi-biennial oscillation (QBO), to study the effect of coupling on the QBO and to examine the QBO signals in stratospheric trace gases, particularly ozone. Radiative coupling of the interactive chemistry to the underlying general circulation model tends to prolong the QBO period and to increase the QBO amplitude in the equatorial zonal wind in the lower and middle stratosphere. The model ozone QBO agrees well with Stratospheric Aerosol and Gas Experiment II and Total Ozone Mapping Spectrometer satellite observations in terms of vertical and latitudinal structure. The model captures the ozone QBO phase change near 28 km over the equator and the column phase change near +/- 15 degrees latitude. Diagnosis of the model chemical terms shows that variations in NOx are the main chemical driver of the O-3 QBO around 35 km, i.e., above the O-3 phase change.
Tropical stratospheric zonal winds in ECMWF ERA-40 reanalysis, rocketsonde data, and rawinsonde data
Resumo:
A low resolution coupled ocean-atmosphere general circulation model OAGCM is used to study the characteristics of the large scale ocean circulation and its climatic impacts in a series of global coupled aquaplanet experiments. Three configurations, designed to produce fundamentally different ocean circulation regimes, are considered. The first has no obstruction to zonal flow, the second contains a low barrier that blocks zonal flow in the ocean at all latitudes, creating a single enclosed basin, whilst the third contains a gap in the barrier to allow circumglobal flow at high southern latitudes. Warm greenhouse climates with a global average air surface temperature of around 27C result in all cases. Equator to pole temperature gradients are shallower than that of a current climate simulation. Whilst changes in the land configuration cause regional changes in temperature, winds and rainfall, heat transports within the system are little affected. Inhibition of all ocean transport on the aquaplanet leads to a reduction in global mean surface temperature of 8C, along with a sharpening of the meridional temperature gradient. This results from a reduction in global atmospheric water vapour content and an increase in tropical albedo, both of which act to reduce global surface temperatures. Fitting a simple radiative model to the atmospheric characteristics of the OAGCM solutions suggests that a simpler atmosphere model, with radiative parameters chosen a priori based on the changing surface configuration, would have produced qualitatively different results. This implies that studies with reduced complexity atmospheres need to be guided by more complex OAGCM results on a case by case basis.
Resumo:
An idealised Pangean configuration is integrated in a coupled ocean atmosphere general circulation model to investigate the form of the ocean circulation and its impacts on the large scale climate system. A vigorous, hemispherically symmetric overturning is found, driven by deep water formation at high latitudes. Whilst the peak mass transport is around 100Sv, a low vertical temperature gradient in the ocean means that the maximum heat transport is only 1.2PW. The geographical change in the coupled model is found to produce a global average warming of 2°C, despite an increase in global surface albedo. This occurs through changes in the atmospheric water vapour and cloud distributions. There is also reduction in the equator-pole temperature gradient, largely attributable to the same causes, avoiding the paradox of low meridional temperature gradients without increased polar heat transport.
Resumo:
On the time scale of a century, the Atlantic thermohaline circulation (THC) is sensitive to the global surface salinity distribution. The advection of salinity toward the deep convection sites of the North Atlantic is one of the driving mechanisms for the THC. There is both a northward and a southward contributions. The northward salinity advection (Nsa) is related to the evaporation in the subtropics, and contributes to increased salinity in the convection sites. The southward salinity advection (Ssa) is related to the Arctic freshwater forcing and tends on the contrary to diminish salinity in the convection sites. The THC changes results from a delicate balance between these opposing mechanisms. In this study we evaluate these two effects using the IPSL-CM4 ocean-atmosphere-sea-ice coupled model (used for IPCC AR4). Perturbation experiments have been integrated for 100 years under modern insolation and trace gases. River runoff and evaporation minus precipitation are successively set to zero for the ocean during the coupling procedure. This allows the effect of processes Nsa and Ssa to be estimated with their specific time scales. It is shown that the convection sites in the North Atlantic exhibit various sensitivities to these processes. The Labrador Sea exhibits a dominant sensitivity to local forcing and Ssa with a typical time scale of 10 years, whereas the Irminger Sea is mostly sensitive to Nsa with a 15 year time scale. The GIN Seas respond to both effects with a time scale of 10 years for Ssa and 20 years for Nsa. It is concluded that, in the IPSL-CM4, the global freshwater forcing damps the THC on centennial time scales.