987 resultados para Stochastic Approximation Algorithms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

As digital imaging processing techniques become increasingly used in a broad range of consumer applications, the critical need to evaluate algorithm performance has become recognised by developers as an area of vital importance. With digital image processing algorithms now playing a greater role in security and protection applications, it is of crucial importance that we are able to empirically study their performance. Apart from the field of biometrics little emphasis has been put on algorithm performance evaluation until now and where evaluation has taken place, it has been carried out in a somewhat cumbersome and unsystematic fashion, without any standardised approach. This paper presents a comprehensive testing methodology and framework aimed towards automating the evaluation of image processing algorithms. Ultimately, the test framework aims to shorten the algorithm development life cycle by helping to identify algorithm performance problems quickly and more efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Navier-Stokes-Gleichungen, Gleitrandbedingung, Konvektions-Diffusions-Gleichung, Finite-Elemente-Methode, Mehrgitterverfahren, Fehlerabschätzung, Iterative Entkopplung

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic compatibility, lightning, crosstalk surge voltages, Monte Carlo simulation, accident initiator

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Mathematik, Habil.-Schr., 2006

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seismic analysis, horizon matching, fault tracking, marked point process,stochastic annealing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work describes a test tool that allows to make performance tests of different end-to-end available bandwidth estimation algorithms along with their different implementations. The goal of such tests is to find the best-performing algorithm and its implementation and use it in congestion control mechanism for high-performance reliable transport protocols. The main idea of this paper is to describe the options which provide available bandwidth estimation mechanism for highspeed data transport protocols and to develop basic functionality of such test tool with which it will be possible to manage entities of test application on all involved testing hosts, aided by some middleware.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate various algorithms for performing Fast Fourier Transformation (FFT)/Inverse Fast Fourier Transformation (IFFT), and proper techniques for maximizing the FFT/IFFT execution speed, such as pipelining or parallel processing, and use of memory structures with pre-computed values (look up tables -LUT) or other dedicated hardware components (usually multipliers). Furthermore, we discuss the optimal hardware architectures that best apply to various FFT/IFFT algorithms, along with their abilities to exploit parallel processing with minimal data dependences of the FFT/IFFT calculations. An interesting approach that is also considered in this paper is the application of the integrated processing-in-memory Intelligent RAM (IRAM) chip to high speed FFT/IFFT computing. The results of the assessment study emphasize that the execution speed of the FFT/IFFT algorithms is tightly connected to the capabilities of the FFT/IFFT hardware to support the provided parallelism of the given algorithm. Therefore, we suggest that the basic Discrete Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT) can also provide high performances, by utilizing a specialized FFT/IFFT hardware architecture that can exploit the provided parallelism of the DFT/IDF operations. The proposed improvements include simplified multiplications over symbols given in polar coordinate system, using sinе and cosine look up tables, and an approach for performing parallel addition of N input symbols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we investigate various algorithms for performing Fast Fourier Transformation (FFT)/Inverse Fast Fourier Transformation (IFFT), and proper techniquesfor maximizing the FFT/IFFT execution speed, such as pipelining or parallel processing, and use of memory structures with pre-computed values (look up tables -LUT) or other dedicated hardware components (usually multipliers). Furthermore, we discuss the optimal hardware architectures that best apply to various FFT/IFFT algorithms, along with their abilities to exploit parallel processing with minimal data dependences of the FFT/IFFT calculations. An interesting approach that is also considered in this paper is the application of the integrated processing-in-memory Intelligent RAM (IRAM) chip to high speed FFT/IFFT computing. The results of the assessment study emphasize that the execution speed of the FFT/IFFT algorithms is tightly connected to the capabilities of the FFT/IFFT hardware to support the provided parallelism of the given algorithm. Therefore, we suggest that the basic Discrete Fourier Transform (DFT)/Inverse Discrete Fourier Transform (IDFT) can also provide high performances, by utilizing a specialized FFT/IFFT hardware architecture that can exploit the provided parallelism of the DFT/IDF operations. The proposed improvements include simplified multiplications over symbols given in polar coordinate system, using sinе and cosine look up tables,and an approach for performing parallel addition of N input symbols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comparative analysis of continuous signals restoration by different kinds of approximation is performed. The software product, allowing to define optimal method of different original signals restoration by Lagrange polynomial, Kotelnikov interpolation series, linear and cubic splines, Haar wavelet and Kotelnikov-Shannon wavelet based on criterion of minimum value of mean-square deviation is proposed. Practical recommendations on the selection of approximation function for different class of signals are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some practical aspects of Genetic algorithms’ implementation regarding to life cycle management of electrotechnical equipment are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Cerrado vegetation, where the seasonal is well defined, rainfall has an important role in controlling the flow of streams and consequently on the structure of macroinvertebrates community. Despite the effects of rainfall associated with seasonality are well studied, little is known about the effects of stochastic rains on the community. In the present study we evaluated the structure and faunal composition of four first-order streams in Central Brazil during the dry season in two years, with and without stochastic rains. Community sampling was done by colonization of boards of high density polyethylene (HDPE), removed after one month submerged in streams. Analysis of Variance (ANOVA) performed indicated no difference in rarefied richness between the two periods, different from numeric density of organisms that was higher in the period without disturbance; moreover, the Detrended Correspondence Analysis (DCA) revealed differences in faunal composition between the two periods. Our results indicate that stochastic rainfall is an important factor in structuring the macroinvertebrates community in studied region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider linear stochastic differential-algebraic equations with constant coefficients and additive white noise. Due to the nature of this class of equations, the solution must be defined as a generalised process (in the sense of Dawson and Fernique). We provide sufficient conditions for the law of the variables of the solution process to be absolutely continuous with respect to Lebesgue measure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the classical Bertrand model when consumers exhibit some strategic behavior in deciding from which seller they will buy. We use two related but different tools. Both consider a probabilistic learning (or evolutionary) mechanism, and in the two of them consumers' behavior in uences the competition between the sellers. The results obtained show that, in general, developing some sort of loyalty is a good strategy for the buyers as it works in their best interest. First, we consider a learning procedure described by a deterministic dynamic system and, using strong simplifying assumptions, we can produce a description of the process behavior. Second, we use nite automata to represent the strategies played by the agents and an adaptive process based on genetic algorithms to simulate the stochastic process of learning. By doing so we can relax some of the strong assumptions used in the rst approach and still obtain the same basic results. It is suggested that the limitations of the rst approach (analytical) provide a good motivation for the second approach (Agent-Based). Indeed, although both approaches address the same problem, the use of Agent-Based computational techniques allows us to relax hypothesis and overcome the limitations of the analytical approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims at assessing the optimal behavior of a firm facing stochastic costs of production. In an imperfectly competitive setting, we evaluate to what extent a firm may decide to locate part of its production in other markets different from which it is actually settled. This decision is taken in a stochastic environment. Portfolio theory is used to derive the optimal solution for the intertemporal profit maximization problem. In such a framework, splitting production between different locations may be optimal when a firm is able to charge different prices in the different local markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is common to find in experimental data persistent oscillations in the aggregate outcomes and high levels of heterogeneity in individual behavior. Furthermore, it is not unusual to find significant deviations from aggregate Nash equilibrium predictions. In this paper, we employ an evolutionary model with boundedly rational agents to explain these findings. We use data from common property resource experiments (Casari and Plott, 2003). Instead of positing individual-specific utility functions, we model decision makers as selfish and identical. Agent interaction is simulated using an individual learning genetic algorithm, where agents have constraints in their working memory, a limited ability to maximize, and experiment with new strategies. We show that the model replicates most of the patterns that can be found in common property resource experiments.