944 resultados para State-space modeling
Resumo:
2000 Mathematics Subject Classification: 60J27, 60K25.
Resumo:
The goal of this paper is to model normal airframe conditions for helicopters in order to detect changes. This is done by inferring the flying state using a selection of sensors and frequency bands that are best for discriminating between different states. We used non-linear state-space models (NLSSM) for modelling flight conditions based on short-time frequency analysis of the vibration data and embedded the models in a switching framework to detect transitions between states. We then created a density model (using a Gaussian mixture model) for the NLSSM innovations: this provides a model for normal operation. To validate our approach, we used data with added synthetic abnormalities which was detected as low-probability periods. The model of normality gave good indications of faults during the flight, in the form of low probabilities under the model, with high accuracy (>92 %). © 2013 IEEE.
Resumo:
Research on the adoption of innovations by individuals has been criticized for focusing on various factors that lead to the adoption or rejection of an innovation while ignoring important aspects of the dynamic process that takes place. Theoretical process-based models hypothesize that individuals go through consecutive stages of information gathering and decision making but do not clearly explain the mechanisms that cause an individual to leave one stage and enter the next one. Research on the dynamics of the adoption process have lacked a structurally formal and quantitative description of the process. ^ This dissertation addresses the adoption process of technological innovations from a Systems Theory perspective and assumes that individuals roam through different, not necessarily consecutive, states, determined by the levels of quantifiable state variables. It is proposed that different levels of these state variables determine the state in which potential adopters are. Various events that alter the levels of these variables can cause individuals to migrate into different states. ^ It was believed that Systems Theory could provide the required infrastructure to model the innovation adoption process, particularly applied to information technologies, in a formal, structured fashion. This dissertation assumed that an individual progressing through an adoption process could be considered a system, where the occurrence of different events affect the system's overall behavior and ultimately the adoption outcome. The research effort aimed at identifying the various states of such system and the significant events that could lead the system from one state to another. By mapping these attributes onto an “innovation adoption state space” the adoption process could be fully modeled and used to assess the status, history, and possible outcomes of a specific adoption process. ^ A group of Executive MBA students were observed as they adopted Internet-based technological innovations. The data collected were used to identify clusters in the values of the state variables and consequently define significant system states. Additionally, events were identified across the student sample that systematically moved the system from one state to another. The compilation of identified states and change-related events enabled the definition of an innovation adoption state-space model. ^
Resumo:
Multi-output Gaussian processes provide a convenient framework for multi-task problems. An illustrative and motivating example of a multi-task problem is multi-region electrophysiological time-series data, where experimentalists are interested in both power and phase coherence between channels. Recently, the spectral mixture (SM) kernel was proposed to model the spectral density of a single task in a Gaussian process framework. This work develops a novel covariance kernel for multiple outputs, called the cross-spectral mixture (CSM) kernel. This new, flexible kernel represents both the power and phase relationship between multiple observation channels. The expressive capabilities of the CSM kernel are demonstrated through implementation of 1) a Bayesian hidden Markov model, where the emission distribution is a multi-output Gaussian process with a CSM covariance kernel, and 2) a Gaussian process factor analysis model, where factor scores represent the utilization of cross-spectral neural circuits. Results are presented for measured multi-region electrophysiological data.
Resumo:
This dissertation examined the response to termination of CO2 enrichment of a forest ecosystem exposed to long-term elevated atmospheric CO2 condition, and aimed at investigating responses and their underlying mechanisms of two important factors of carbon cycle in the ecosystem, stomatal conductance and soil respiration. Because the contribution of understory vegetation to the entire ecosystem grew with time, we first investigated the effect of elevated CO2 on understory vegetation. Potential growth enhancing effect of elevated CO2 were not observed, and light seemed to be a limiting factor. Secondly, we examined the importance of aerodynamic conductance to determine canopy conductance, and found that its effect can be negligible. Responses of stomatal conductance and soil respiration were assessed using Bayesian state space model. In two years after the termination of CO2 enrichment, stomatal conductance in formerly elevated CO2 returned to ambient level, while soil respiration became smaller than ambient level and did not recovered to ambient in two years.
Resumo:
Free energy calculations are a computational method for determining thermodynamic quantities, such as free energies of binding, via simulation.
Currently, due to computational and algorithmic limitations, free energy calculations are limited in scope.
In this work, we propose two methods for improving the efficiency of free energy calculations.
First, we expand the state space of alchemical intermediates, and show that this expansion enables us to calculate free energies along lower variance paths.
We use Q-learning, a reinforcement learning technique, to discover and optimize paths at low computational cost.
Second, we reduce the cost of sampling along a given path by using sequential Monte Carlo samplers.
We develop a new free energy estimator, pCrooks (pairwise Crooks), a variant on the Crooks fluctuation theorem (CFT), which enables decomposition of the variance of the free energy estimate for discrete paths, while retaining beneficial characteristics of CFT.
Combining these two advancements, we show that for some test models, optimal expanded-space paths have a nearly 80% reduction in variance relative to the standard path.
Additionally, our free energy estimator converges at a more consistent rate and on average 1.8 times faster when we enable path searching, even when the cost of path discovery and refinement is considered.
Resumo:
Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process. These types of phenomena are described well by what are referred to as impulsive differential equations, systems of differential equations coupled with discrete mappings in state space. In this thesis we employ impulsive differential equations to model disease transmission within an industrial livestock barn. In particular we focus on the poultry industry and a viral disease of poultry called Marek's disease. This system lends itself well to impulsive differential equations. Entire cohorts of poultry are introduced and removed from a barn concurrently. Additionally, Marek's disease is transmitted indirectly and the viral particles can survive outside the host for weeks. Therefore, depopulating, cleaning, and restocking of the barn are integral factors in modelling disease transmission and can be completely captured by the impulsive component of the model. Our model allows us to investigate how modern broiler farm practices can make disease elimination difficult or impossible to achieve. It also enables us to investigate factors that may contribute to virulence evolution. Our model suggests that by decrease the cohort duration or by decreasing the flock density, Marek's disease can be eliminated from a barn with no increase in cleaning effort. Unfortunately our model also suggests that these practices will lead to disease evolution towards greater virulence. Additionally, our model suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.
Resumo:
In questa tesi si discutono inizialmente i concetti chiave di agente e sistema multi-agente e si descrivono in ogni dettaglio il linguaggio di programmazione AgentSpeak(L) e la piattaforma Jason, fornendo le basi per poter programmare con il paradigma AOP. Lo scopo centrale di questa tesi è quello di estendere il modello di pianificazione dell’interprete di AgentSpeak(L), considerato come caso specifico, con un approccio che può essere integrato in qualsiasi linguaggio di programmazione ad agenti. Si espone un’evoluzione di AgentSpeak(L) in AgentSpeak(PL), ossia la creazione ed esecuzione di piani automatici in caso di fallimento attraverso l'uso di un algoritmo di planning state-space. L'approccio integrativo modifica il Ciclo di Reasoning di Jason proponendo in fase di pianificazione automatica un riuso di piani già esistenti, atto a favorire la riduzione di tempi e costi nel long-term in un sistema multi-agente. Nel primo capitolo si discute della nozione di agente e delle sue caratteristiche principali mentre nel secondo capitolo come avviene la vera e propria programmazione con AgentSpeak(L). Avendo approfondito questi argomenti base, il terzo capitolo è incentrato sull’interprete Jason e il quarto su una migliore estensione dell'interprete, in grado di superare i limiti migliorando le performance nel tempo. Si delineano infine alcune considerazioni e ringraziamenti nel quinto e ultimo capitolo. Viene proposta con scrittura di carattere divulgativo e non ambiguo.
Resumo:
In the last thirty years, the emergence and progression of biologging technology has led to great advances in marine predator ecology. Large databases of location and dive observations from biologging devices have been compiled for an increasing number of diving predator species (such as pinnipeds, sea turtles, seabirds and cetaceans), enabling complex questions about animal activity budgets and habitat use to be addressed. Central to answering these questions is our ability to correctly identify and quantify the frequency of essential behaviours, such as foraging. Despite technological advances that have increased the quality and resolution of location and dive data, accurately interpreting behaviour from such data remains a challenge, and analytical methods are only beginning to unlock the full potential of existing datasets. This review evaluates both traditional and emerging methods and presents a starting platform of options for future studies of marine predator foraging ecology, particularly from location and two-dimensional (time-depth) dive data. We outline the different devices and data types available, discuss the limitations and advantages of commonly-used analytical techniques, and highlight key areas for future research. We focus our review on pinnipeds - one of the most studied taxa of marine predators - but offer insights that will be applicable to other air-breathing marine predator tracking studies. We highlight that traditionally-used methods for inferring foraging from location and dive data, such as first-passage time and dive shape analysis, have important caveats and limitations depending on the nature of the data and the research question. We suggest that more holistic statistical techniques, such as state-space models, which can synthesise multiple track, dive and environmental metrics whilst simultaneously accounting for measurement error, offer more robust alternatives. Finally, we identify a need for more research to elucidate the role of physical oceanography, device effects, study animal selection, and developmental stages in predator behaviour and data interpretation.
Resumo:
This thesis presents quantitative studies of T cell and dendritic cell (DC) behaviour in mouse lymph nodes (LNs) in the naive state and following immunisation. These processes are of importance and interest in basic immunology, and better understanding could improve both diagnostic capacity and therapeutic manipulations, potentially helping in producing more effective vaccines or developing treatments for autoimmune diseases. The problem is also interesting conceptually as it is relevant to other fields where 3D movement of objects is tracked with a discrete scanning interval. A general immunology introduction is presented in chapter 1. In chapter 2, I apply quantitative methods to multi-photon imaging data to measure how T cells and DCs are spatially arranged in LNs. This has been previously studied to describe differences between the naive and immunised state and as an indicator of the magnitude of the immune response in LNs, but previous analyses have been generally descriptive. The quantitative analysis shows that some of the previous conclusions may have been premature. In chapter 3, I use Bayesian state-space models to test some hypotheses about the mode of T cell search for DCs. A two-state mode of movement where T cells can be classified as either interacting to a DC or freely migrating is supported over a model where T cells would home in on DCs at distance through for example the action of chemokines. In chapter 4, I study whether T cell migration is linked to the geometric structure of the fibroblast reticular network (FRC). I find support for the hypothesis that the movement is constrained to the fibroblast reticular cell (FRC) network over an alternative 'random walk with persistence time' model where cells would move randomly, with a short-term persistence driven by a hypothetical T cell intrinsic 'clock'. I also present unexpected results on the FRC network geometry. Finally, a quantitative method is presented for addressing some measurement biases inherent to multi-photon imaging. In all three chapters, novel findings are made, and the methods developed have the potential for further use to address important problems in the field. In chapter 5, I present a summary and synthesis of results from chapters 3-4 and a more speculative discussion of these results and potential future directions.
Resumo:
Este artículo presenta un resultado de investigación financiado con recursos propios en el que se expone un modelo en espacio de estados de un rectificador trifásico controlado active front end. Utilizando este modelo se deriva una ley de control orientado al voltaje (VOC), enfocado en el comportamiento como carga resistiva, factor de potencia unitario, el cual es probado mediante simulación usando el Toolbox SimPowerSystem en Simulink de Matlab®.
Resumo:
We investigate key characteristics of Ca²⁺ puffs in deterministic and stochastic frameworks that all incorporate the cellular morphology of IP[subscript]3 receptor channel clusters. In a first step, we numerically study Ca²⁺ liberation in a three dimensional representation of a cluster environment with reaction-diffusion dynamics in both the cytosol and the lumen. These simulations reveal that Ca²⁺ concentrations at a releasing cluster range from 80 µM to 170 µM and equilibrate almost instantaneously on the time scale of the release duration. These highly elevated Ca²⁺ concentrations eliminate Ca²⁺ oscillations in a deterministic model of an IP[subscript]3R channel cluster at physiological parameter values as revealed by a linear stability analysis. The reason lies in the saturation of all feedback processes in the IP[subscript]3R gating dynamics, so that only fluctuations can restore experimentally observed Ca²⁺ oscillations. In this spirit, we derive master equations that allow us to analytically quantify the onset of Ca²⁺ puffs and hence the stochastic time scale of intracellular Ca²⁺ dynamics. Moving up the spatial scale, we suggest to formulate cellular dynamics in terms of waiting time distribution functions. This approach prevents the state space explosion that is typical for the description of cellular dynamics based on channel states and still contains information on molecular fluctuations. We illustrate this method by studying global Ca²⁺ oscillations.
Resumo:
The goal of this article is to build an abstract mathematical theory rather than a computational one of the process of transmission of ideology. The basis of much of the argument is Patten's Environment Theory that characterizes a system with its double environment (input or stimulus and output or response) and the existing interactions among them. Ideological processes are semiotic processes, and if in Patten's theory, the two environments are physical, in this theory ideological processes are physical and semiotic, as are stimulus and response.
Resumo:
Con el inicio del periodo Post-Guerra Fría el Sistema Internacional comienza a experimentar un incremento en el fortalecimiento de su componente social; la Sociedad de Estados alcanza un mayor nivel de homogenización, el estado, unidad predominante de esta, comienzan atravesar una serie de transformaciones que obedecerán a una serie de cambios y continuidades respecto al periodo anterior. Desde la perspectiva del Realismo Subalterno de las Relaciones Internacionales se destacan el proceso de construcción de estado e inserción al sistema como las variables que determinan el sentimiento de inseguridad experimentado por las elites estatales del Tercer Mundo; procesos que en el contexto de un nuevo y turbulento periodo en el sistema, tomara algunas características particulares que darán un sentido especifico al sentimiento de inseguridad y las acciones a través de las cuales las elites buscan disminuirlo. La dimensión externa del sentimiento de inseguridad, el nuevo papel que toma la resistencia popular como factor determinante del sentimiento de inseguridad y de la cooperación, así como del conflicto, entre los miembros de la Sociedad Internacional, la inserción como promotor de estrategias de construcción de Estado, son alguno de los temas puntuales, que desde la perspectiva subalterna, parecen salir a flote tras el análisis del sistema en lo que se ha considerado como el periodo Post-Guerra Fría. En este sentido Yemen, se muestra como un caso adecuado no solo para poner a prueba las postulados de la teoría subalterna, veinte años después de su obra más prominente (The third world security Predicament), escrita por M. Ayoob, sino como un caso pertinente que permite acercarse más a la comprensión del papel del Tercer Mundo al interior de la Sociedad Internacional de Estados.
Resumo:
This thesis work has been motivated by an internal benchmark dealing with the output regulation problem of a nonlinear non-minimum phase system in the case of full-state feedback. The system under consideration structurally suffers from finite escape time, and this condition makes the output regulation problem very hard even for very simple steady-state evolution or exosystem dynamics, such as a simple integrator. This situation leads to studying the approaches developed for controlling Non-minimum phase systems and how they affect feedback performances. Despite a lot of frequency domain results, only a few works have been proposed for describing the performance limitations in a state space system representation. In particular, in our opinion, the most relevant research thread exploits the so-called Inner-Outer Decomposition. Such decomposition allows splitting the Non-minimum phase system under consideration into a cascade of two subsystems: a minimum phase system (the outer) that contains all poles of the original system and an all-pass Non-minimum phase system (the inner) that contains all the unavoidable pathologies of the unstable zero dynamics. Such a cascade decomposition was inspiring to start working on functional observers for linear and nonlinear systems. In particular, the idea of a functional observer is to exploit only the measured signals from the system to asymptotically reconstruct a certain function of the system states, without necessarily reconstructing the whole state vector. The feature of asymptotically reconstructing a certain state functional plays an important role in the design of a feedback controller able to stabilize the Non-minimum phase system.