976 resultados para Standard method
Resumo:
A fast gas chromatography with a flame ionisation detector (GC-FID) method for the simultaneous analysis of methyl palmitate (C16:0), stearate (C18:0), oleate (C18:1), linoleate (C18:2) and linolenate (C18:3) in biodiesel samples was proposed. The analysis was conducted in a customised ionic-liquid stationary-phase capillary, SLB-IL 111, with a length of 14 m, an internal diameter of 0.10 mm, a film thickness of 0.08 µm and operated isothermally at 160 °C using hydrogen as the carrier gas at a rate of 50 cm s-1 in run time about 3 min. Once methyl myristate (C14:0) is present lower than 0.5% m/m in real samples it was used as an internal standard. The method was successful applied to monitoring basic and acidic catalysis transesterification reactions of vegetable oils such as soybean, canola, corn, sunflower and those used in frying process.
Resumo:
The application of multivariate calibration techniques to multicomponent analysis by UV-VIS molecular absorption spectrometry is a powerful tool for simultaneous determination of several chemical species. However, when this methodology is accomplished manually, it is slow and laborious, consumes high amounts of reagents and samples, is susceptible to contaminations and presents a high operational cost. To overcome these drawbacks, a flow-batch analyser is proposed in this work. This analyser was developed for automatic preparation of standard calibration and test (or validation) mixtures. It was applied to the simultaneous determination of Cu2+, Mn2+ and Zn2+ in polyvitaminic and polymineral pharmaceutical formulations, using 4-(2-piridilazo) resorcinol as reagent and a UV-VIS spectrophotometer with a photodiode array detector. The results obtained with the proposed system are in good agreement with those obtained by flame atomic absorption spectrometry, which was employed as reference method. With the proposed analyser, the preparation of calibration and test mixtures can be accomplished about four hours, while the manual procedure requires at least two days. Moreover, it consumes smaller amounts of reagents and samples than the manual procedure. After the preparation of calibration and test mixtures, 60 samples h-1 can be carried out with the proposed flow-batch analyser.
Resumo:
A novel sensitive and relatively selective kinetic method is presented for the determination of V(V), based on its catalytic effect on the oxidation reaction of Ponceau Xylydine by potassium bromate in presence of 5-sulfosalicylic acid (SSA) as activator. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of Ponceau Xylydine at 640 nm between 0.5 to 7 min (the fixed time method) in H3PO4 medium at 25ºC. The effect of various parameters such as concentrations of H3PO4, SSA, bromate and Ponceau Xylydine, temperature and ionic strength on the rate of net reaction were studied. The method is free from most interferences, especially from large amounts of V(IV). The decrease in absorbance is proportional to the concentration of V(V) over the entire concentration range tested (1-15 ng mL−1) with a detection limit of 0.46 ng mL-1 (according to statistical 3Sblank/k criterion) and a coefficient of variation (CV) of 1.8% (for ten replicate measurement at 95% confidence level). The proposed method suffers few interferences such as Cr(VI) and Hg(II) ions. The method was successfully applied to the determination of V(V) in tap water, drinking water, bottled mineral water samples and a certified standard reference material such as SRM-1640 with satisfactory results. The vanadium contents of water samples were also determined by FAAS for a comparison. The recovery of spiked vanadium(V) was found to be quantitative and the reproducibility was satisfactory. It was observed that the results of the SRM 1640 were in good agreement with the certified value.
Resumo:
In order to verify Point-Centered Quarter Method (PCQM) accuracy and efficiency, using different numbers of individuals by per sampled area, in 28 quarter points in an Araucaria forest, southern Paraná, Brazil. Three variations of the PCQM were used for comparison associated to the number of sampled individual trees: standard PCQM (SD-PCQM), with four sampled individuals by point (one in each quarter), second measured (VAR1-PCQM), with eight sampled individuals by point (two in each quarter), and third measuring (VAR2-PCQM), with 16 sampled individuals by points (four in each quarter). Thirty-one species of trees were recorded by the SD-PCQM method, 48 by VAR1-PCQM and 60 by VAR2-PCQM. The level of exhaustiveness of the vegetation census and diversity index showed an increasing number of individuals considered by quadrant, indicating that VAR2-PCQM was the most accurate and efficient method when compared with VAR1-PCQM and SD-PCQM.
Resumo:
Most studies on measures of transpiration of plants, especially woody fruit, relies on methods of heat supply in the trunk. This study aimed to calibrate the Thermal Dissipation Probe Method (TDP) to estimate the transpiration, study the effects of natural thermal gradients and determine the relation between outside diameter and area of xylem in 'Valencia' orange young plants. TDP were installed in 40 orange plants of 15 months old, planted in boxes of 500 L, in a greenhouse. It was tested the correction of the natural thermal differences (DTN) for the estimation based on two unheated probes. The area of the conductive section was related to the outside diameter of the stem by means of polynomial regression. The equation for estimation of sap flow was calibrated having as standard lysimeter measures of a representative plant. The angular coefficient of the equation for estimating sap flow was adjusted by minimizing the absolute deviation between the sap flow and daily transpiration measured by lysimeter. Based on these results, it was concluded that the method of TDP, adjusting the original calibration and correction of the DTN, was effective in transpiration assessment.
Resumo:
The aim of this study was to compare two methods of tear sampling for protein quantification. Tear samples were collected from 29 healthy dogs (58 eyes) using Schirmer tear test (STT) strip and microcapillary tubes. The samples were frozen at -80ºC and analyzed by the Bradford method. Results were analyzed by Student's t test. The average protein concentration and standard deviation from tears collected with microcapillary tube were 4.45mg/mL ±0.35 and 4,52mg/mL ±0.29 for right and left eyes respectively. The average protein concentration and standard deviation from tears collected with Schirmer Tear Test (STT) strip were and 54.5mg/mL ±0.63 and 54.15mg/mL ±0.65 to right and left eyes respectively. Statistically significant differences (p<0.001) were found between the methods. In the conditions in which this study was conducted, the average protein concentration obtained with the Bradford test from tear samples obtained by Schirmer Tear Test (STT) strip showed values higher than those obtained with microcapillary tube. It is important that concentration of tear protein pattern values should be analyzed according the method used to collect tear samples.
Resumo:
Tool center point calibration is a known problem in industrial robotics. The major focus of academic research is to enhance the accuracy and repeatability of next generation robots. However, operators of currently available robots are working within the limits of the robot´s repeatability and require calibration methods suitable for these basic applications. This study was conducted in association with Stresstech Oy, which provides solutions for manufacturing quality control. Their sensor, based on the Barkhausen noise effect, requires accurate positioning. The accuracy requirement admits a tool center point calibration problem if measurements are executed with an industrial robot. Multiple possibilities are available in the market for automatic tool center point calibration. Manufacturers provide customized calibrators to most robot types and tools. With the handmade sensors and multiple robot types that Stresstech uses, this would require great deal of labor. This thesis introduces a calibration method that is suitable for all robots which have two digital input ports free. It functions with the traditional method of using a light barrier to detect the tool in the robot coordinate system. However, this method utilizes two parallel light barriers to simultaneously measure and detect the center axis of the tool. Rotations about two axes are defined with the center axis. The last rotation about the Z-axis is calculated for tools that have different width of X- and Y-axes. The results indicate that this method is suitable for calibrating the geometric tool center point of a Barkhausen noise sensor. In the repeatability tests, a standard deviation inside robot repeatability was acquired. The Barkhausen noise signal was also evaluated after recalibration and the results indicate correct calibration. However, future studies should be conducted using a more accurate manipulator, since the method employs the robot itself as a measuring device.
Resumo:
The objectives of the present study were 1) to compare results obtained by the traditional manual method of measuring heart rate (HR) and heart rate response (HRR) to the Valsalva maneuver, standing and deep breathing, with those obtained using a computerized data analysis system attached to a standard electrocardiograph machine; 2) to standardize the responses of healthy subjects to cardiovascular tests, and 3) to evaluate the response to these tests in a group of patients with diabetes mellitus (DM). In all subjects (97 healthy and 143 with DM) we evaluated HRR to deep breathing, HRR to standing, HRR to the Valsalva maneuver, and blood pressure response (BPR) to standing up and to a sustained handgrip. Since there was a strong positive correlation between the results obtained with the computerized method and the traditional method, we conclude that the new method can replace the traditional manual method for evaluating cardiovascular responses with the advantages of speed and objectivity. HRR and BPR of men and women did not differ. A correlation between age and HRR was observed for standing (r = -0.48, P<0.001) and deep breathing (r = -0.41, P<0.002). Abnormal BPR to standing was usually observed only in diabetic patients with definite and severe degrees of autonomic neuropathy.
Resumo:
R,S-sotalol, a ß-blocker drug with class III antiarrhythmic properties, is prescribed to patients with ventricular, atrial and supraventricular arrhythmias. A simple and sensitive method based on HPLC-fluorescence is described for the quantification of R,S-sotalol racemate in 500 µl of plasma. R,S-sotalol and its internal standard (atenolol) were eluted after 5.9 and 8.5 min, respectively, from a 4-micron C18 reverse-phase column using a mobile phase consisting of 80 mM KH2PO4, pH 4.6, and acetonitrile (95:5, v/v) at a flow rate of 0.5 ml/min with detection at lex = 235 nm and lem = 310 nm, respectively. This method, validated on the basis of R,S-sotalol measurements in spiked blank plasma, presented 20 ng/ml sensitivity, 20-10,000 ng/ml linearity, and 2.9 and 4.8% intra- and interassay precision, respectively. Plasma sotalol concentrations were determined by applying this method to investigate five high-risk patients with atrial fibrillation admitted to the Emergency Service of the Medical School Hospital, who received sotalol, 160 mg po, as loading dose. Blood samples were collected from a peripheral vein at zero, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0, 8.0, 12.0 and 24.0 h after drug administration. A two-compartment open model was applied. Data obtained, expressed as mean, were: CMAX = 1230 ng/ml, TMAX = 1.8 h, AUCT = 10645 ng h-1 ml-1, Kab = 1.23 h-1, a = 0.95 h-1, ß = 0.09 h-1, t(1/2)ß = 7.8 h, ClT/F = 3.94 ml min-1 kg-1, and Vd/F = 2.53 l/kg. A good systemic availability and a fast absorption were obtained. Drug distribution was reduced to the same extent in terms of total body clearance when patients and healthy volunteers were compared, and consequently elimination half-life remained unchanged. Thus, the method described in the present study is useful for therapeutic drug monitoring purposes, pharmacokinetic investigation and pharmacokinetic-pharmacodynamic sotalol studies in patients with tachyarrhythmias.
Resumo:
The reverse transcription-polymerase chain reaction (RT-PCR) is the most sensitive method used to evaluate gene expression. Although many advances have been made since quantitative RT-PCR was first described, few reports deal with the mathematical bases of this technique. The aim of the present study was to develop and standardize a competitive PCR method using standard-curves to quantify transcripts of the myogenic regulatory factors MyoD, Myf-5, Myogenin and MRF4 in chicken embryos. Competitor cDNA molecules were constructed for each gene under study using deletion primers, which were designed to maintain the anchorage sites for the primers used to amplify target cDNAs. Standard-curves were prepared by co-amplification of different amounts of target cDNA with a constant amount of competitor. The content of specific mRNAs in embryo cDNAs was determined after PCR with a known amount of competitor and comparison to standard-curves. Transcripts of the housekeeping ß-actin gene were measured to normalize the results. As predicted by the model, most of the standard-curves showed a slope close to 1, while intercepts varied depending on the relative efficiency of competitor amplification. The sensitivity of the RT-PCR method permitted the detection of as few as 60 MyoD/Myf-5 molecules per reaction but approximately 600 molecules of MRF4/Myogenin mRNAS were necessary to produce a measurable signal. A coefficient of variation of 6 to 19% was estimated for the different genes analyzed (6 to 9 repetitions). The competitive RT-PCR assay described here is sensitive, precise and allows quantification of up to 9 transcripts from a single cDNA sample.
Resumo:
Arterial baroreflex sensitivity estimated by pharmacological impulse stimuli depends on intrinsic signal variability and usually a subjective choice of blood pressure (BP) and heart rate (HR) values. We propose a semi-automatic method to estimate cardiovascular reflex sensitivity to bolus infusions of phenylephrine and nitroprusside. Beat-to-beat BP and HR time series for male Wistar rats (N = 13) were obtained from the digitized signal (sample frequency = 2 kHz) and analyzed by the proposed method (PRM) developed in Matlab language. In the PRM, time series were low-pass filtered with zero-phase distortion (3rd order Butterworth used in the forward and reverse direction) and presented graphically, and parameters were selected interactively. Differences between basal mean values and peak BP (deltaBP) and HR (deltaHR) values after drug infusions were used to calculate baroreflex sensitivity indexes, defined as the deltaHR/deltaBP ratio. The PRM was compared to the method traditionally (TDM) employed by seven independent observers using files for reflex bradycardia (N = 43) and tachycardia (N = 61). Agreement was assessed by Bland and Altman plots. Dispersion among users, measured as the standard deviation, was higher for TDM for reflex bradycardia (0.60 ± 0.46 vs 0.21 ± 0.26 bpm/mmHg for PRM, P < 0.001) and tachycardia (0.83 ± 0.62 vs 0.28 ± 0.28 bpm/mmHg for PRM, P < 0.001). The advantage of the present method is related to its objectivity, since the routine automatically calculates the desired parameters according to previous software instructions. This is an objective, robust and easy-to-use tool for cardiovascular reflex studies.
Resumo:
Prompt and accurate detection of rejection prior to pathological changes after organ transplantation is vital for monitoring rejections. Although biopsy remains the current gold standard for rejection diagnosis, it is an invasive method and cannot be repeated daily. Thus, noninvasive monitoring methods are needed. In this study, by introducing an IL-2 neutralizing monoclonal antibody (IL-2 N-mAb) and immunosuppressants into the culture with the presence of specific stimulators and activated lymphocytes, an activated lymphocyte-specific assay (ALSA) system was established to detect the specific activated lymphocytes. This assay demonstrated that the suppression in the ALSA test was closely related to the existence of specific activated lymphocytes. The ALSA test was applied to 47 heart graft recipients and the proliferation of activated lymphocytes from all rejection recipients proven by endomyocardial biopsies was found to be inhibited by spleen cells from the corresponding donors, suggesting that this suppression could reflect the existence of activated lymphocytes against donor antigens, and thus the rejection of a heart graft. The sensitivity of the ALSA test in these 47 heart graft recipients was 100%; however, the specificity was only 37.5%. It was also demonstrated that IL-2 N-mAb was indispensible, and the proper culture time courses and concentrations of stimulators were essential for the ALSA test. This preliminary study with 47 grafts revealed that the ALSA test was a promising noninvasive tool, which could be used in vitro to assist with the diagnosis of rejection post-heart transplantation.
Resumo:
In the last decades, the chemical synthesis of short oligonucleotides has become an important aspect of study due to the discovery of new functions for nucleic acids such as antisense oligonucleotides (ASOs), aptamers, DNAzymes, microRNA (miRNA) and small interfering RNA (siRNA). The applications in modern therapies and fundamental medicine on the treatment of different cancer diseases, viral infections and genetic disorders has established the necessity to develop scalable methods for their cheaper and easier industrial manufacture. While small scale solid-phase oligonucleotide synthesis is the method of choice in the field, various challenges still remain associated with the production of short DNA and RNA-oligomers in very large quantities. On the other hand, solution phase synthesis of oligonucleotides offers a more predictable scaling-up of the synthesis and is amenable to standard industrial manufacture techniques. In the present thesis, various protocols for the synthesis of short DNA and RNA oligomers have been studied on a peracetylated and methylated β-cyclodextrin, and also on a pentaerythritol-derived support. On using the peracetylated and methylated β-cyclodextrin soluble supports, the coupling cycle was simplified by replacement of the typical 5′-O-(4,4′-dimethoxytrityl) protecting group with an acid-labile acetal-protected 5′-O-(1-methoxy-1-methylethyl) group, which upon acid-catalyzed methanolysis released easily removable volatile products. For this reason monomeric building blocks 5′-O-(1-methoxy-1-methylethyl) 3′-(2-cyano-ethyl-N,N-diisopropylphosphoramidite) were synthesized. Alternatively, on using the precipitative pentaerythritol support, novel 2´-O-(2-cyanoethyl)-5´-O-(1-methoxy-1-methylethyl) protected phosphoramidite building blocks for RNA synthesis have been prepared and their applicability by the synthesis of a pentamer was demonstrated. Similarly, a method for the preparation of short RNAs from commercially available 5´-O-(4,4´-dimethoxytrityl)-2´-O-(tert-butyldimethyl-silyl)ribonucleoside 3´-(2-cyanoethyl-N,N-diisopropylphosphoramidite) building blocks has been developed
Resumo:
A method using Liquid Chromatography Tanden Mass Spectrometry (LC-MS/MS) with matrix-matched calibration curve was developed and validated for determining ochratoxin A (OTA) in green coffee. Linearity was found between 3.0 and 23.0 ng.g-1. Mean recoveries ranged between 90.45% and 108.81%; the relative standard deviation under repeatability and intermediate precision conditions ranged from 5.39% to 9.94% and from 2.20% to 14.34%, respectively. The limits of detection and quantification were 1.2 ng.g-1 and 3.0 ng.g-¹, respectively. The method developed was suitable and contributed to the field of mycotoxin analysis, and it will be used for future production of the Certified Reference Material (CRM) for OTA in coffee.
Resumo:
A method for determination of organohalogen pesticides in strawberry by gas chromatography with electron capture detection was validated and applied in a monitoring program. Linearity, matrix effects, and day effect were evaluated for the analytes alpha-endosulfan, beta-endosulfan, endosulfan sulphate, lambda-cyhalothrin, procymidone, and trifluralin. The linear range varied according to the chromatographic response of the analyte. Significant matrix effects were observed. The mean recoveries ranged from 74.6 to 115.4%, with repeatability standard deviations between 1.6 and 21.0% and intermediate precision between 5.9 and 21.0%. Detection, quantification and decision limit, and detection capacity ranged from 0.003 to 0.007 mg/kg, 0.005 to 0.013 mg/kg; 0.003 to 3.128 mg/kg; and 0.005 to 3.266 mg/kg, respectively. The method was fit for the purpose of monitoring organohalogen residues in strawberries. Residues of these pesticides were detected in 124 of the 186 samples analyzed between 2009 and 2011 in the state of Minas Gerais. Nine of them did not comply with the current legislation requirements; among them, seven (3.8%) had residues of unauthorized pesticide for the culture of strawberry, one (0.5%) had residues above the maximum residue limit, and another one (0.5%) exhibited both non-conformities.