986 resultados para Spray chamber


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments to evaluate the effect of in-season calcium (Ca) sprays on late-season peach (Prunus persica L. Batsch cv. Calrico) were carried out for a 2-year period. Calcium formulations (0.5% and 1.0% in 2008 and only 0.5% tested in 2009) supplied either as CaCl2 or Ca propionate in combination with two or three adjuvants (0.05% of the nonionic surfactants Tween 20 and Break Thru, and 0.5% carboxymethylcellulose, CMC) were sprayed four to five times over the growing season. Peach mesocarp and endocarp Ca concentrations were determined on a 15-day basis from the beginning of May until the end of June. Further tissue analyses were performed at harvest. A decreasing trend in fruit Ca concentrations over the growing season was always observed regardless of the Ca treatments. Both in 2008 and 2009, significant tissue Ca increments associated with the application of Ca-containing sprays in combination with adjuvants were only observed in June, which may be coincident with the period of pit hardening. In 2008, both at harvest and after cold storage, the total soluble-solids concentration (° Brix) of fruits supplied with Ca propionate (0.5% and 1.0% Ca) was always lower as compared to the rest of treatments. The application of multiple Ca-containing sprays increased firmness at harvest and after cold storage, especially when CaCl2 was the active ingredient used. Supplying the adjuvants Tween 20 and CMC increased fruit acidity both at harvest and after cold storage. Evaluation of the development of physiological disorders after cold storage (2 weeks at 0°C) indicated a lower susceptibility of Ca-treated fruits to internal browning. Fruits treated with multiple CaCl2-, CMC-, and Break Thru®-containing sprays during the growing season were significantly less prone to the development of chilling injuries as compared to untreated peaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The European HiPER project aims to demonstrate commercial viability of inertial fusion energy within the following two decades. This goal requires an extensive Research &Development program on materials for different applications (e.g., first wall, structural components and final optics). In this paper we will discuss our activities in the framework of HiPER to develop materials studies for the different areas of interest. The chamber first wall will have to withstand explosions of at least 100 MJ at a repetition rate of 5-10 Hz. If direct drive targets are used, a dry wall chamber operated in vacuum is preferable. In this situation the major threat for the wall stems from ions. For reasonably low chamber radius (5-10 m) new materials based on W and C are being investigated, e.g., engineered surfaces and nanostructured materials. Structural materials will be subject to high fluxes of neutrons leading to deleterious effects, such as, swelling. Low activation advanced steels as well as new nanostructured materials are being investigated. The final optics lenses will not survive the extreme ion irradiation pulses originated in the explosions. Therefore, mitigation strategies are being investigated. In addition, efforts are being carried out in understanding optimized conditions to minimize the loss of optical properties by neutron and gamma irradiation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using the spray pyrolysis methodology in its classical configuration we have grown self-assembled MgxZn1−xO quantum dots (size [similar]4–6 nm) in the overall range of compositions 0 ≤ x ≤ 1 on c-sapphire, Si (100) and quartz substrates. Composition of the quantum dots was determined by means of transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy. Selected area electron diffraction reveals the growth of single phase hexagonal MgxZn1−xO quantum dots with composition 0 ≤ x ≤ 0.32 by using a nominal concentration of Mg in the range 0 to 45%. Onset of Mg concentration about 50% (nominal) forces the hexagonal lattice to undergo a phase transition from hexagonal to a cubic structure which resulted in the growth of hexagonal and cubic phases of MgxZn1−xO in the intermediate range of Mg concentrations 50 to 85% (0.39 ≤ x ≤ 0.77), whereas higher nominal concentration of Mg ≥ 90% (0.81 ≤ x ≤ 1) leads to the growth of single phase cubic MgxZn1−xO quantum dots. High resolution transmission electron microscopy and fast Fourier transform confirm the results and show clearly distinguishable hexagonal and cubic crystal structures of the respective quantum dots. A difference of 0.24 eV was detected between the core levels (Zn 2p and Mg 1s) measured in quantum dots with hexagonal and cubic structures by X-ray photoemission. The shift of these core levels can be explained in the frame of the different coordination of cations in the hexagonal and cubic configurations. Finally, the optical absorption measurements performed on single phase hexagonal MgxZn1−xO QDs exhibited a clear shift in optical energy gap on increasing the Mg concentration from 0 to 40%, which is explained as an effect of substitution of Zn2+ by Mg2+ in the ZnO lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tritium breeding is an essential component of future fusion nuclear reactors. Nuclear fusion reactors require Kg quantities of tritium per year of operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutronics and activation of the preliminary reacion chamber of HiPER reactor based in a SCLL blanket

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of the south of Spain, near the province of Cordova, in a tributary of the Guadalquivir River it has been constructed during the years 2004 to 2007 the reservoir called El Arenoso. El Arenoso reservoir that belongs to Environment Ministry is destined to downstream Guadalquivir’s water supply and the general regulation of the river. The dam is located on the same name river and it is next to the Montoro’s municipal district, 41 km northeast of Cordova. The main work consists on an embankment dam, with central clay core, and slates and greywacke shoulders. The core is covered downstream with a filter material and upstream with a transition material. The dimensions of the dam are 80 m high, 1.480 m long at its crest, and it has been needed more than 3 million m3 of materials, creating a waterproof barrier able to keep 160 hm3 as a useful reservoir. In the zone of the core is located the chamber of valves with a horizontal clearance of 10 m and a vertical clearance of 14,517 m. The present article exposes the most important characteristics of project and construction, of valves chamber of the Arenoso reservoir.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El barrio de Chamberí, situado la norte del casco histórico de Madrid, fue en su origen un arrabal exterior al recinto cercado de la Villa. Se ubicó sobre una infraestructura viaria previa formada por la carretera de Francia, cuyo trazado había sido regularizado a principios del s XIX, y los paseos arbolados creados treinta años después. La Administración intentó controlar el incipiente núcleo de población surgido de forma espontánea. Los Arquitectos Municipales levantaron un plano del estado del lugar, redactaron unas escuetas reglas de construcción y dibujaron sucesivos planos de alineaciones en los que se prefiguraba la ciudad. Pero el traslado de la ciudad planeada al terreno dependía de la iniciativa de los propietarios del suelo y el proceso fue lento y difícil. Al finalizar el cuarto de siglo que discurrió entre 1833 y 1858, en que Chamberí fue un arrabal independiente al margen de la Villa, el tejido urbano consolidado era discontinuo y desigual. La puesta en marcha del Ensanche de Madrid marcó un cambio de rumbo. Los terrenos ocupados por el arrabal entraron a formar parte de él. Se proyectó una nueva ordenación para el barrio en relación con el conjunto del Ensanche que alteraba el planeamiento vigente. Las protestas de los propietarios de Chamberí, que veían como sus casas podían llegar a ser arrasadas, influyeron de forma decisiva, entre otras cuestiones, en el desmantelamiento del Plan Castro. Las trazas del arrabal planeadas a mediados del siglo XIX que se habían materializado en el terreno permanecen en la ciudad actual. En esta investigación se ha analizado la forma urbana del barrio y su evolución en el tiempo, intentando descifrar sus causas. Se describe el territorio donde se ubicó Chamberí, los asentamientos existentes y los elementos que limitaron su extensión: la ciudad cercada por el sur, los cuatro cementerios que jalonaban la antigua carretera de Francia por poniente y la vaguada de la Castellana por el este. Se compara el crecimiento del tejido urbano en la realidad con los proyectos de ordenación realizados para el arrabal. También se han estudiado las arquitecturas no construidas y los proyectos de ciudad no realizados. Estas ideas, que solo fueron líneas y manchas en el papel, nos permiten imaginar como pudo haber sido el barrio si la historia hubiera seguido otros caminos posibles. En la búsqueda de esas ciudades perdidas, tanto las que existieron como las tan solo pensadas, se ha utilizado el dibujo como medio irrefutable de proyectar el pasado y expresar su forma. Se ha realizado una secuencia cronológica de 22 planimetrías que muestra la transformación de Chamberí y su entorno, y los proyectos realizados para ese territorio con idénticos criterios -misma escala y recursos gráficos similares- que se encuentran en las primeras páginas del tomo II de este documento. La narración gráfica del proceso evolutivo se concluye con un plano a mayor escala, subdividido en cuatro cuadrantes, en el que se superponen sobre el parcelario actual varios de los momentos para evidenciar las permanencias y mutaciones. Así mismo, el discurso general es gráfico y literal; las palabras se complementan con las imágenes existentes sobre las cuestiones tratadas y con los dibujos elaborados que las reconstituyen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The HiPER reactor design is exploring different reaction chambers. In this study, we tackle the neutronicsand activation studies of a preliminary reaction chamber based in the following technologies: unpro-tected dry wall for the First Wall, self-cooled lead lithium blanket, and independent low activation steelVacuum Vessel. The most critical free parameter in this stage is the blanket thickness, as a function ofthe6Li enrichment. After a parametric study, we select for study both a ?thin? and ?thick? blanket, with?high? and ?low?6Li enrichment respectively, to reach a TBR = 1.1. To help to make a choice, we com-pute, for both blanket options, in addition to the TBR, the energy amplification factor, the tritium partialpressure, the203Hg and210Po total activity in the LiPb loop, and the Vacuum Vessel thickness requiredto guarantee the reweldability during its lifetime. The thin blanket shows a superior performance in thesafety related issues and structural viability, but it operates at higher6Li enrichment. It is selected forfurther improvements. The Vacuum Vessel shows to be unviable in both cases, with the thickness varyingbetween 39 and 52 cm. Further chamber modifications, such as the introduction of a neutron reflector,are required to exploit the benefits of the thin blanket with a reasonable Vacuum Vessel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the new anechoic chamber available at The University of Kent, UK. This facility includes a spherical near/far field, planar near field, cylindrical near field and a compact range. The facility allows measurement from 600 MHz up to 110 MHz. The spherical, planar and cylindrical ranges covers up to 40 GHz and the compact range is available from 50 GHz up to 110 MHz. Immediate plans are to use the new facility to measure body-centric antennas and sensing nodes together with near field sampling of finite sized Frequency Selective Surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundación Ciudad de la Energía (CIUDEN) is carrying out a project of geological storage of CO2, where CO2 injection tests are planned in saline aquifers at a depth of 1500 m for scientific objectives and project demonstration. Before any CO2 is stored, it is necessary to determine the baseline flux of CO2 in order to detect potential leakage during injection and post-injection monitoring. In November 2009 diffuse flux measurements of CO2 using an accumulation chamber were made in the area selected by CIUDEN for geological storage, located in Hontomin province of Burgos (Spain). This paper presents the tests carried out in order to establish the optimum sampling methodology and the geostatistical analyses performed to determine the range, with which future field campaigns will be planned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The group vaporization of a monodisperse fuel-spray jet discharging into a hot coflowing gaseous stream is investigated for steady flow by numerical and asymptotic methods with a two-continua formulation used for the description of the gas and liquid phases. The jet is assumed to be slender and laminar, as occurs when the Reynolds number is moderately large, so that the boundary-layer form of the conservation equations can be employed in the analysis. Two dimensionless parameters are found to control the flow structure, namely the spray dilution parameter 1, defined as the mass of liquid fuel per unit mass of gas in the spray stream, and the group vaporization parameter e, defined as the ratio of the characteristic time of spray evolution due to droplet vaporization to the characteristic diffusion time across the jet. It is observed that, for the small values of e often encountered in applications, vaporization occurs only in a thin layer separating the spray from the outer droplet-free stream. This regime of sheath vaporization, which is controlled by heat conduction, is amenable to a simplified asymptotic description, independent of ε,in which the location of the vaporization layer is determined numerically as a free boundary in a parabolic problem involving matching of the separate solutions in the external streams, with appropriate jump conditions obtained from analysis of the quasi-steady vaporization front. Separate consideration of dilute and dense sprays, corresponding, respectively, to the asymptotic limits λ<<1 and λ>>1, enables simplified descriptions to be obtained for the different flow variables, including explicit analytic expressions for the spray penetration distance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conditions are identified under which analyses of laminar mixing layers can shed light on aspects of turbulent spray combustion. With this in mind, laminar spray-combustion models are formulated for both non-premixed and partially premixed systems. The laminar mixing layer separating a hot-air stream from a monodisperse spray carried by either an inert gas or air is investigated numerically and analytically in an effort to increase understanding of the ignition process leading to stabilization of high-speed spray combustion. The problem is formulated in an Eulerian framework, with the conservation equations written in the boundary-layer approximation and with a one-step Arrhenius model adopted for the chemistry description. The numerical integrations unveil two different types of ignition behaviour depending on the fuel availability in the reaction kernel, which in turn depends on the rates of droplet vaporization and fuel-vapour diffusion. When sufficient fuel is available near the hot boundary, as occurs when the thermochemical properties of heptane are employed for the fuel in the integrations, combustion is established through a precipitous temperature increase at a well-defined thermal-runaway location, a phenomenon that is amenable to a theoretical analysis based on activation-energy asymptotics, presented here, following earlier ideas developed in describing unsteady gaseous ignition in mixing layers. By way of contrast, when the amount of fuel vapour reaching the hot boundary is small, as is observed in the computations employing the thermochemical properties of methanol, the incipient chemical reaction gives rise to a slowly developing lean deflagration that consumes the available fuel as it propagates across the mixing layer towards the spray. The flame structure that develops downstream from the ignition point depends on the fuel considered and also on the spray carrier gas, with fuel sprays carried by air displaying either a lean deflagration bounding a region of distributed reaction or a distinct double-flame structure with a rich premixed flame on the spray side and a diffusion flame on the air side. Results are calculated for the distributions of mixture fraction and scalar dissipation rate across the mixing layer that reveal complexities that serve to identify differences between spray-flamelet and gaseous-flamelet problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In typical liquid-fueled burners the fuel is injected as a high-velocity liquid jet that breaks up to form the spray. The initial heating and vaporization of the liquid fuel rely on the relatively large temperatures of the sourrounding gas, which may include hot combustion products and preheated air. The heat exchange between the liquid and the gas phases is enhanced by droplet dispersion arising from the turbulent motion. Chemical reaction takes place once molecular mixing between the fuel vapor and the oxidizer has occurred in mixing layers separating the spray flow from the hot air stream. Since in most applications the injection velocities are much larger than the premixed-flame propagation velocity, combustion stabilization relies on autoignition of the fuel-oxygen mixture, with the combustion stand-off distance being controlled by the interaction of turbulent transport, droplet heating and vaporization, and gas-phase chemical reactions. In this study, conditions are identified under which analyses of laminar flamelets canshed light on aspects of turbulent spray ignition. This study extends earlier fundamental work by Liñan & Crespo (1976) on ignition in gaseous mixing layers to ignition of sprays. Studies of laminar mixing layers have been found to be instrumental in developing un-derstanding of turbulent combustion (Peters 2000), including the ignition of turbulent gaseous diffusion flames (Mastorakos 2009). For the spray problem at hand, the configuration selected, shown in Figure 1, involves a coflow mixing layer formed between a stream of hot air moving at velocity UA and a monodisperse spray moving at velocity USUA. The boundary-layer approximation will be used below to describe the resulting sl ender flow, which exhibits different igniting behaviors depending on the characteristics of t he fuel. In this approximation, consideration of the case U A = U S enables laminar ignition distances to be related to ignition times of unstrained spray flamelets, thereby pro viding quantitative information of direct applicability in regions of low scala r dissipation-rate in turbulent reactive flows (see the discussion in pp. 181–186 of Peters (2000)) . This report is organized as follows. Effects of droplet dispersion dynamics on ignition of sprays in turbulent mixing layers are discussed in Section 2. The formulation f or ignition in laminar mixing layers is outlined in Sections 3 and 4. The results are presented in Section 5. In Section 6, the mixture-fraction field and associated scalar dissipat ion rates for spray ignition are discussed. Finally, some brief conclusions are drawn in Section 7.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an anular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This nalysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by rrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assessment of diastolic chamber properties of the right ventricle by global fitting of pressure-volume data and conformational analysis of 3D + T echocardiographic sequences