981 resultados para Spin excitation
Resumo:
Slab and cluster model spin-polarized calculations have been carried out to study various properties of isolated first-row transition metal atoms adsorbed on the anionic sites of the regular MgO(100) surface. The calculated adsorption energies follow the trend of the metal cohesive energies, indicating that the changes in the metal-support and metal-metal interactions along the series are dominated by atomic properties. In all cases, except for Ni at the generalized gradient approximation level, the number of unpaired electron is maintained as in the isolated metal atom. The energy required to change the atomic state from high to low spin has been computed using the PW91 and B3LYP density-functional-theory-based methods. PW91 fails to predict the proper ground state of V and Ni, but the results for the isolated and adsorbed atom are consistent within the method. B3LYP properly predicts the ground state of all first-row transition atom the high- to low-spin transition considered is comparable to experiment. In all cases, the interaction with the surface results in a reduced high- to low-spin transition energy.
Resumo:
The Brueckner-Hartree-Fock formalism is applied to study spin polarized neutron matter properties. Results of the total energy per particle as a function of the spin polarization and density are presented for two modern realistic nucleon-nucleon interactions, Nijmegen II and Reid93. We find that the dependence of the energy on the spin polarization is practically parabolic in the full range of polarizations. The magnetic susceptibility of the system is computed. Our results show no indication of a ferromagnetic transition which becomes even more difficult as the density increases.
Resumo:
The magnetic properties of Mn-doped ZnO (ZnO:Mn) nanorods grown by hydrothermal process at a temperature of 200 8C and a growth time of 3 h have been studied. The samples were characterized by using powder X-ray diffraction with Rietveld refinement, scanning electron microscopy, energy-dispersive X-ray analysis and SQUID magnetometry. Mn (3 wt%) and (5 wt%)-doped ZnO samples exhibit paramagnetic and ferromagnetic behavior, respectively, at room temperature. The spin-glass behavior is observed from the samples with respect to the decrease of temperature. At 10 K, both samples exhibit a hysteresis loop with relatively low coercivity. The room-temperature ferromagnetism in 5 wt% Mn-doped ZnO nanorods is attributed to the increase in the specific area of grain boundaries, interaction between dopant Mn2þ ions substituted at Zn2þ site and the interaction between Mn2þ ions and Zn2þ ions from the ZnO host lattice
Resumo:
This thesis is divided in to 9 chapters and deals with the modification of TiO2 for various applications include photocatalysis, thermal reaction, photovoltaics and non-linear optics. Chapter 1 involves a brief introduction of the topic of study. An introduction to the applications of modified titania systems in various fields are discussed concisely. Scope and objectives of the present work are also discussed in this chapter. Chapter 2 explains the strategy adopted for the synthesis of metal, nonmetal co-doped TiO2 systems. Hydrothermal technique was employed for the preparation of the co-doped TiO2 system, where Ti[OCH(CH3)2]4, urea and metal nitrates were used as the sources for TiO2, N and metals respectively. In all the co-doped systems, urea to Ti[OCH(CH3)2]4 was taken in a 1:1 molar ratio and varied the concentration of metals. Five different co-doped catalytic systems and for each catalysts, three versions were prepared by varying the concentration of metals. A brief explanation of physico-chemical techniques used for the characterization of the material was also presented in this chapter. This includes X-ray Diffraction (XRD), Raman Spectroscopy, FTIR analysis, Thermo Gravimetric Analysis, Energy Dispersive X-ray Analysis (EDX), Scanning Electron Microscopy(SEM), UV-Visible Diffuse Reflectance Spectroscopy (UV-Vis DRS), Transmission Electron Microscopy (TEM), BET Surface Area Measurements and X-ray Photoelectron Spectroscopy (XPS). Chapter 3 contains the results and discussion of characterization techniques used for analyzing the prepared systems. Characterization is an inevitable part of materials research. Determination of physico-chemical properties of the prepared materials using suitable characterization techniques is very crucial to find its exact field of application. It is clear from the XRD pattern that photocatalytically active anatase phase dominates in the calcined samples with peaks at 2θ values around 25.4°, 38°, 48.1°, 55.2° and 62.7° corresponding to (101), (004), (200), (211) and (204) crystal planes (JCPDS 21-1272) respectively. But in the case of Pr-N-Ti sample, a new peak was observed at 2θ = 30.8° corresponding to the (121) plane of the polymorph brookite. There are no visible peaks corresponding to dopants, which may be due to their low concentration or it is an indication of the better dispersion of impurities in the TiO2. Crystallite size of the sample was calculated from Scherrer equation byusing full width at half maximum (FWHM) of the (101) peak of the anatase phase. Crystallite size of all the co-doped TiO2 was found to be lower than that of bare TiO2 which indicates that the doping of metal ions having higher ionic radius into the lattice of TiO2 causes some lattice distortion which suppress the growth of TiO2 nanoparticles. The structural identity of the prepared system obtained from XRD pattern is further confirmed by Raman spectra measurements. Anatase has six Raman active modes. Band gap of the co-doped system was calculated using Kubelka-Munk equation and that was found to be lower than pure TiO2. Stability of the prepared systems was understood from thermo gravimetric analysis. FT-IR was performed to understand the functional groups as well as to study the surface changes occurred during modification. EDX was used to determine the impurities present in the system. The EDX spectra of all the co-doped samples show signals directly related to the dopants. Spectra of all the co-doped systems contain O and Ti as the main components with low concentrations of doped elements. Morphologies of the prepared systems were obtained from SEM and TEM analysis. Average particle size of the systems was drawn from histogram data. Electronic structures of the samples were identified perfectly from XPS measurements. Chapter 4 describes the photocatalytic degradation of herbicides Atrazine and Metolachlor using metal, non-metal co-doped titania systems. The percentage of degradation was analyzed by HPLC technique. Parameters such as effect of different catalysts, effect of time, effect of catalysts amount and reusability studies were discussed. Chapter 5 deals with the photo-oxidation of some anthracene derivatives by co-doped catalytic systems. These anthracene derivatives come underthe category of polycyclic aromatic hydrocarbons (PAH). Due to the presence of stable benzene rings, most of the PAH show strong inhibition towards biological degradation and the common methods employed for their removal. According to environmental protection agency, most of the PAH are highly toxic in nature. TiO2 photochemistry has been extensively investigated as a method for the catalytic conversion of such organic compounds, highlighting the potential of thereof in the green chemistry. There are actually two methods for the removal of pollutants from the ecosystem. Complete mineralization is the one way to remove pollutants. Conversion of toxic compounds to another compound having toxicity less than the initial starting compound is the second way. Here in this chapter, we are concentrating on the second aspect. The catalysts used were Gd(1wt%)-N-Ti, Pd(1wt%)-N-Ti and Ag(1wt%)-N-Ti. Here we were very successfully converted all the PAH to anthraquinone, a compound having diverse applications in industrial as well as medical fields. Substitution of 10th position of desired PAH by phenyl ring reduces the feasibility of photo reaction and produced 9-hydroxy 9-phenyl anthrone (9H9PA) as an intermediate species. The products were separated and purified by column chromatography using 70:30 hexane/DCM mixtures as the mobile phase and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis. Chapter 6 elucidates the heterogeneous Suzuki coupling reaction by Cu/Pd bimetallic supported on TiO2. Sol-Gel followed by impregnation method was adopted for the synthesis of Cu/Pd-TiO2. The prepared system was characterized by XRD, TG-DTG, SEM, EDX, BET Surface area and XPS. The product was separated and purified by column chromatography using hexane as the mobile phase. Maximum isolated yield of biphenyl of around72% was obtained in DMF using Cu(2wt%)-Pd(4wt%)-Ti as the catalyst. In this reaction, effective solvent, base and catalyst were found to be DMF, K2CO3 and Cu(2wt%)-Pd(4wt%)-Ti respectively. Chapter 7 gives an idea about the photovoltaic (PV) applications of TiO2 based thin films. Due to energy crisis, the whole world is looking for a new sustainable energy source. Harnessing solar energy is one of the most promising ways to tackle this issue. The present dominant photovoltaic (PV) technologies are based on inorganic materials. But the high material, low power conversion efficiency and manufacturing cost limits its popularization. A lot of research has been conducted towards the development of low-cost PV technologies, of which organic photovoltaic (OPV) devices are one of the promising. Here two TiO2 thin films having different thickness were prepared by spin coating technique. The prepared films were characterized by XRD, AFM and conductivity measurements. The thickness of the films was measured by Stylus Profiler. This chapter mainly concentrated on the fabrication of an inverted hetero junction solar cell using conducting polymer MEH-PPV as photo active layer. Here TiO2 was used as the electron transport layer. Thin films of MEH-PPV were also prepared using spin coating technique. Two fullerene derivatives such as PCBM and ICBA were introduced into the device in order to improve the power conversion efficiency. Effective charge transfer between the conducting polymer and ICBA were understood from fluorescence quenching studies. The fabricated Inverted hetero junction exhibited maximum power conversion efficiency of 0.22% with ICBA as the acceptor molecule. Chapter 8 narrates the third order order nonlinear optical properties of bare and noble metal modified TiO2 thin films. Thin films were fabricatedby spray pyrolysis technique. Sol-Gel derived Ti[OCH(CH3)2]4 in CH3CH2OH/CH3COOH was used as the precursor for TiO2. The precursors used for Au, Ag and Pd were the aqueous solutions of HAuCl4, AgNO3 and Pd(NO3)2 respectively. The prepared films were characterized by XRD, SEM and EDX. The nonlinear optical properties of the prepared materials were investigated by Z-Scan technique comprising of Nd-YAG laser (532 nm,7 ns and10 Hz). The non-linear coefficients were obtained by fitting the experimental Z-Scan plot with the theoretical plots. Nonlinear absorption is a phenomenon defined as a nonlinear change (increase or decrease) in absorption with increasing of intensity. This can be mainly divided into two types: saturable absorption (SA) and reverse saturable absorption (RSA). Depending on the pump intensity and on the absorption cross- section at the excitation wavelength, most molecules show non- linear absorption. With increasing intensity, if the excited states show saturation owing to their long lifetimes, the transmission will show SA characteristics. Here absorption decreases with increase of intensity. If, however, the excited state has strong absorption compared with that of the ground state, the transmission will show RSA characteristics. Here in our work most of the materials show SA behavior and some materials exhibited RSA behavior. Both these properties purely depend on the nature of the materials and alignment of energy states within them. Both these SA and RSA have got immense applications in electronic devices. The important results obtained from various studies are presented in chapter 9.
Resumo:
Salient pole brushless alternators coupled to IC engines are extensively used as stand-by power supply units for meeting in- dustrial power demands. Design of such generators demands high power to weight ratio, high e ciency and low cost per KVA out- put. Moreover, the performance characteristics of such machines like voltage regulation and short circuit ratio (SCR) are critical when these machines are put into parallel operation and alterna- tors for critical applications like defence and aerospace demand very low harmonic content in the output voltage. While designing such alternators, accurate prediction of machine characteristics, including total harmonic distortion (THD) is essential to mini- mize development cost and time. Total harmonic distortion in the output voltage of alternators should be as low as possible especially when powering very sophis- ticated and critical applications. The output voltage waveform of a practical AC generator is replica of the space distribution of the ux density in the air gap and several factors such as shape of the rotor pole face, core saturation, slotting and style of coil disposition make the realization of a sinusoidal air gap ux wave impossible. These ux harmonics introduce undesirable e ects on the alternator performance like high neutral current due to triplen harmonics, voltage distortion, noise, vibration, excessive heating and also extra losses resulting in poor e ciency, which in turn necessitate de-rating of the machine especially when connected to non-linear loads. As an important control unit of brushless alternator, the excitation system and its dynamic performance has a direct impact on alternator's stability and reliability. The thesis explores design and implementation of an excitation i system utilizing third harmonic ux in the air gap of brushless al- ternators, using an additional auxiliary winding, wound for 1=3rd pole pitch, embedded into the stator slots and electrically iso- lated from the main winding. In the third harmonic excitation system, the combined e ect of two auxiliary windings, one with 2=3rd pitch and another third harmonic winding with 1=3rd pitch, are used to ensure good voltage regulation without an electronic automatic voltage regulator (AVR) and also reduces the total harmonic content in the output voltage, cost e ectively. The design of the third harmonic winding by analytic methods demands accurate calculation of third harmonic ux density in the air gap of the machine. However, precise estimation of the amplitude of third harmonic ux in the air gap of a machine by conventional design procedures is di cult due to complex geome- try of the machine and non-linear characteristics of the magnetic materials. As such, prediction of the eld parameters by conven- tional design methods is unreliable and hence virtual prototyping of the machine is done to enable accurate design of the third har- monic excitation system. In the design and development cycle of electrical machines, it is recognized that the use of analytical and experimental methods followed by expensive and in exible prototyping is time consum- ing and no longer cost e ective. Due to advancements in com- putational capabilities over recent years, nite element method (FEM) based virtual prototyping has become an attractive al- ternative to well established semi-analytical and empirical design methods as well as to the still popular trial and error approach followed by the costly and time consuming prototyping. Hence, by virtually prototyping the alternator using FEM, the important performance characteristics of the machine are predicted. Design of third harmonic excitation system is done with the help of results obtained from virtual prototype of the machine. Third harmonic excitation (THE) system is implemented in a 45 KVA ii experimental machine and experiments are conducted to validate the simulation results. Simulation and experimental results show that by utilizing third harmonic ux in the air gap of the ma- chine for excitation purposes during loaded conditions, triplen harmonic content in the output phase voltage is signi cantly re- duced. The prototype machine with third harmonic excitation system designed and developed based on FEM analysis proved to be economical due to its simplicity and has the added advan- tage of reduced harmonics in the output phase voltage.
Resumo:
In the collision system Xe - Ag, the thresholds for excitation of quasimolecular L radiation and characteristic Ag L radiation have been found to lie at about 5 MeV and 1 MeV, respectively. These results are discussed on the basis of ab initio calculations of the screened interaction potential and the electron-correlation diagram.
Resumo:
Ab initio fully relativistic SCF molecular calculations of energy eigenvalues as well as coupling-matrix elements are used to calculate the 1s_\sigma excitation differential cross section for Ne-Ne and Ne-O in ion-atom collisions. A relativistic perturbation treatment which allows a direct comparison with analogous non-relativistic calculations is also performed.
Resumo:
We present spin-polarized Hartree-Fock-Slater calculations performed with the highly accurate numerical finite element method for the atoms N and 0 and the diatomic radical OH as examples.
Resumo:
Augerelectron emission from foil-excited Ne-ions (6 to 10 MeV beam energy) has been measured. The beam-foil time-of-flight technique has been applied to study electronic transitions of metastable states (delayed spectra) and to determine their lifetimes. To achieve a line identification for the complex structure observed in the prompt spectrum, the spectrum is separated into its isoelectronic parts by an Augerelectron-ion coincidence correlating the emitted electrons and the emitting projectiles of well defined final charge states q_f. Well resolved spectra were obtained and the lines could be identified using intermediate coupling Dirac-Fock multiconfiguration calculations. From the total KLL-Augerelectron transition probabilities observed in the electronion coincidence experiment for Ne (10 MeV) the amount of projectiles with one K-hole just behind a C-target can be estimated. For foil-excited Ne-projectiles in contrast to single collision results the comparison of transition intensities for individual lines with calculated transition probabilities yields a statistical population of Li- and Be-like configurations.
Resumo:
The doubly excited 2s2p ^1P_1 level of Kr^{34+} populated via resonant transfer and excitation (RTE) feeds selectively the metastable ls2s ^1 S_0 state which can only decay via simultaneous emission of two photons to the ground state 1s^2 ^1 S_0. X-ray/X-ray coincidence measurements in heavy ionatom collisions enable the direct measurement of the spectral distribution of the two-photon decay in He-like ions. In addition, we observe strong photon cascades indueed by radiative electron capture.
Resumo:
KLL-Auger transitions of the three electron system in Ne have been recorded in a coincidence experiment frec of contaminants from other systems. Energies as well as intensities are compared with calculated values.
Resumo:
An electronic theory is developed, which describes the ultrafast demagnetization in itinerant ferromagnets following the absorption of a femtosecond laser pulse. The present work intends to elucidate the microscopic physics of this ultrafast phenomenon by identifying its fundamental mechanisms. In particular, it aims to reveal the nature of the involved spin excitations and angular-momentum transfer between spin and lattice, which are still subjects of intensive debate. In the first preliminary part of the thesis the initial stage of the laser-induced demagnetization process is considered. In this stage the electronic system is highly excited by spin-conserving elementary excitations involved in the laser-pulse absorption, while the spin or magnon degrees of freedom remain very weakly excited. The role of electron-hole excitations on the stability of the magnetic order of one- and two-dimensional 3d transition metals (TMs) is investigated by using ab initio density-functional theory. The results show that the local magnetic moments are remarkably stable even at very high levels of local energy density and, therefore, indicate that these moments preserve their identity throughout the entire demagnetization process. In the second main part of the thesis a many-body theory is proposed, which takes into account these local magnetic moments and the local character of the involved spin excitations such as spin fluctuations from the very beginning. In this approach the relevant valence 3d and 4p electrons are described in terms of a multiband model Hamiltonian which includes Coulomb interactions, interatomic hybridizations, spin-orbit interactions, as well as the coupling to the time-dependent laser field on the same footing. An exact numerical time evolution is performed for small ferromagnetic TM clusters. The dynamical simulations show that after ultra-short laser pulse absorption the magnetization of these clusters decreases on a time scale of hundred femtoseconds. In particular, the results reproduce the experimentally observed laser-induced demagnetization in ferromagnets and demonstrate that this effect can be explained in terms of the following purely electronic non-adiabatic mechanism: First, on a time scale of 10–100 fs after laser excitation the spin-orbit coupling yields local angular-momentum transfer between the spins and the electron orbits, while subsequently the orbital angular momentum is very rapidly quenched in the lattice on the time scale of one femtosecond due to interatomic electron hoppings. In combination, these two processes result in a demagnetization within hundred or a few hundred femtoseconds after laser-pulse absorption.
Resumo:
Intensive, ultrakurze Laserpulse regen Festkörper in einen Zustand an, in dem die Elektronen hohe Temperaturen erlangen, während das Gitter kalt bleibt. Die heißen Elektronen beeinflussen das sog. Laser-angeregte interatomare Potential bzw. die Potentialenergiefläche, auf der die Ionen sich bewegen. Dieses kann neben anderen ultrakurzen Prozessen zu Änderungen der Phononfrequenzen (phonon softening oder phonon hardening) führen. Viele ultrakurze strukturelle Phänomene in Festkörpern hängen bei hohen Laseranregungen von Änderungen der Phononfrequenzen bei niedrigeren Anregungen ab. Um die Laser-bedingten Änderungen des Phononenspektrums von Festkörpern beschreiben zu können, haben wir ein auf Temperatur-abhängiger Dichtefunktionaltheorie basierendes Verfahren entwickelt. Die dramatischen Änderungen nach einer Laseranregung in der Potentialenergiefläche werden durch die starke Veränderung der Zustandsdichte und der Besetzungen der Elektronen hervorgerufen. Diese Änderungen in der Zustandsdichte und den Besetzungszahlen können wir mit unserer Methode berechnen, um dann damit das Verhalten der Phononen nach einer Laseranregung zu analysieren. Auf diese Art und Weise studierten wir den Einfluss einer Anregung mit einem intensiven, ultrakurzen Laserpuls auf repräsentative Phonon Eigenmoden in Magnesium, Kupfer und Aluminium. Wir stellten dabei in manchen Gitterschwingungen entweder eine Abnahme (softening) und in anderen eine Zunahme (hardening) der Eigenfrequenz fest. Manche Moden zeigten bei Variation der Laseranregungsstärke sogar beide Verhaltensweisen. Das eine Phonon-Eigenmode ein hardening und softening zeigen kann, wird durch das Vorhandensein von van Hove Singularitäten in der elektronischen Zustandsdichte des betrachteten Materials erklärt. Für diesen Fall stellt unser Verfahren zusammen mit der Sommerfeld-Entwicklung die Eigenschaften der Festkörper Vibrationen in Verbindung mit den Laser induzierten Veränderungen in den elektronischen Besetzungen für verschiedene Phonon-eingefrorene Atomkonfigurationen. Auch die absolute Größe des softening und hardening wurde berechnet. Wir nehmen an, dass unsere Theorie Licht in die Effekte der Laseranregung von verschiedenen Materialien bringt. Außerdem studierten wir mit Hilfe von Dichtefunktionaltheorie die strukturellen Material-Eigenschaften, die durch kurze XUV Pulse induziert werden. Warme dichte Materie in Ultrakurzpuls angeregten Magnesium wurde analysiert und verglichen mit den Ergebnissen bei durch Laser Anregung bedingten Änderungen. Unter Verwendung von elektronischer-Temperatur-abhängiger Dichtefunktionaltheorie wurden die Änderungen in den Bindungseigenschaften von warmen dichten Magnesium studiert. Wir stellten dabei beide Effekte, Verstärkung und Abschwächung von Bindungen, bei jeweils verschiedenen Phonon Eigenmoden von Magnesium auf Grund von der Erzeugung von Rumpflöchern und dem Vorhandensein von heißen Elektronen fest. Die zusätzliche Erzeugung von heißen Elektronen führt zu einer Änderung der Bindungscharakteristik, die der Änderung, die durch die bereits vorhandenen Rumpflöcher hervorgerufen wurde, entgegen wirkt. Die thermischen Eigenschaften von Nanostrukturen sind teilweise sehr wichtig für elektronische Bauteile. Wir studierten hier ebenfalls den Effekt einer einzelnen Graphen Lage auf Kupfer. Dazu untersuchten wir mit Dichtefunktionaltheorie die strukturellen- und Schwingungseigenschaften von Graphen auf einem Kupfer Substrat. Wir zeigen, dass die schwache Wechselwirkung zwischen Graphen und Kupfer die Frequenz der aus der Ebene gerichteten akustischen Phonon Eigenmode anhebt und die Entartung zwischen den aus der Ebene gerichteten akustischen und optischen Phononen im K-Punkt des Graphen Spektrums aufhebt. Zusätzlich führten wir ab initio Berechnungen zur inelastischen Streuung eines Helium Atoms mit Graphen auf einem Kuper(111) Substrat durch. Wir berechneten dazu das Leistungsspektrum, das uns eine Idee über die verschiedenen Gitterschwingungen des Graphene-Kuper(111) Systems gibt, die durch die Kollision des Helium Atom angeregt werden. Wir brachten die Positionen der Peaks im Leistungsspektrum mit den Phonon Eigenfrequenzen, die wir aus den statischen Rechnungen erhalten haben, in Beziehung. Unsere Ergebnisse werden auch verglichen mit den Ergebnissen experimenteller Daten zur Helium Streuung an Graphen-Kupfer(111) Oberflächen.