849 resultados para Spatio-temporal model
Resumo:
Deformable Template models are first applied to track the inner wall of coronary arteries in intravascular ultrasound sequences, mainly in the assistance to angioplasty surgery. A circular template is used for initializing an elliptical deformable model to track wall deformation when inflating a balloon placed at the tip of the catheter. We define a new energy function for driving the behavior of the template and we test its robustness both in real and synthetic images. Finally we introduce a framework for learning and recognizing spatio-temporal geometric constraints based on Principal Component Analysis (eigenconstraints).
Resumo:
Subsidence is a hazard that may have natural or anthropogenic origin causing important economic losses. The area of Murcia city (SE Spain) has been affected by subsidence due to groundwater overexploitation since the year 1992. The main observed historical piezometric level declines occurred in the periods 1982–1984, 1992–1995 and 2004–2008 and showed a close correlation with the temporal evolution of ground displacements. Since 2008, the pressure recovery in the aquifer has led to an uplift of the ground surface that has been detected by the extensometers. In the present work an elastic hydro-mechanical finite element code has been used to compute the subsidence time series for 24 geotechnical boreholes, prescribing the measured groundwater table evolution. The achieved results have been compared with the displacements estimated through an advanced DInSAR technique and measured by the extensometers. These spatio-temporal comparisons have showed that, in spite of the limited geomechanical data available, the model has turned out to satisfactorily reproduce the subsidence phenomenon affecting Murcia City. The model will allow the prediction of future induced deformations and the consequences of any piezometric level variation in the study area.
Resumo:
THE MAP AS A COLLABORATIVE MEDIUM FOR SPATIO-TEMPORAL VISUALIZATION This dissertation focuses on the relationship between maps and spatio-temporal data visualization. It is divided into two components: theoretical framework and practical approach. The study begins by questioning the role of the map in today’s digital society and particularly its role in visualization, and finishes with the conceptualization and development of an interactive dot map that visualizes data from Instagram and Twitter. Nowadays, geographic information is no longer produced just by experts, but also by ordinary people that are able to participate in data creation and exchange. The Web 2.0 lies in the heart of this change, where social media represent a significant tool for producing geotagged content, allowing its users to share their location and to spatially reference their publications. Furthermore, amateur mapmaking and neogeography have benefited from the emergence of several new devices that enable the creation of digital maps that are interactive, adaptable and easily shared on the Web. This study adopts a descriptive approach calling upon the diverse aspects of the map and its evolution as a medium for visualizing geotagged data, highlighting collaborative mapping as an emerging subject area that is of mandatory future research. Relevant projects are also analyzed in order to identify trends and different approaches for visualizing social media data in its spatial context, intended to support the project’s conceptualization, development and evaluation. The created map demonstrates how spatial knowledge and perception of place are now redefined by the contributions of individuals; it also shows how that activity produces new sources of geographic information, forcing the development of new techniques and approaches that allow an adequate exploration of content and visualization methods of the contemporary map
Resumo:
1Recent studies demonstrated the sensitivity of northern forest ecosystems to changes in the amount and duration of snow cover at annual to decadal time scales. However, the consequences of snowfall variability remain uncertain for ecological variables operating at longer time scales, especially the distributions of forest communities. 2The Great Lakes region of North America offers a unique setting to examine the long-term effects of variable snowfall on forest communities. Lake-effect snow produces a three-fold gradient in annual snowfall over tens of kilometres, and dramatic edaphic variations occur among landform types resulting from Quaternary glaciations. We tested the hypothesis that these factors interact to control the distributions of mesic (dominated by Acer saccharum, Tsuga canadensis and Fagus grandifolia) and xeric forests (dominated by Pinus and Quercus spp.) in northern Lower Michigan. 3We compiled pre-European-settlement vegetation data and overlaid these data with records of climate, water balance and soil, onto Landtype Association polygons in a geographical information system. We then used multivariate adaptive regression splines to model the abundance of mesic vegetation in relation to environmental controls. 4Snowfall is the most predictive among five variables retained by our model, and it affects model performance 29% more than soil texture, the second most important variable. The abundance of mesic trees is high on fine-textured soils regardless of snowfall, but it increases with snowfall on coarse-textured substrates. Lake-effect snowfall also determines the species composition within mesic forests. The weighted importance of A. saccharum is significantly greater than of T. canadensis or F. grandifolia within the lake-effect snowbelt, whereas T. canadensis is more plentiful outside the snowbelt. These patterns are probably driven by the influence of snowfall on soil moisture, nutrient availability and fire return intervals. 5Our results imply that a key factor dictating the spatio-temporal patterns of forest communities in the vast region around the Great Lakes is how the lake-effect snowfall regime responds to global change. Snowfall reductions will probably cause a major decrease in the abundance of ecologically and economically important species, such as A. saccharum.
Resumo:
Evolutionary change results from selection acting on genetic variation. For migration to be successful, many different aspects of an animal's physiology and behaviour need to function in a co-coordinated way. Changes in one migratory trait are therefore likely to be accompanied by changes in other migratory and life-history traits. At present, we have some knowledge of the pressures that operate at the various stages of migration, but we know very little about the extent of genetic variation in various aspects of the migratory syndrome. As a consequence, our ability to predict which species is capable of what kind of evolutionary change, and at which rate, is limited. Here, we review how our evolutionary understanding of migration may benefit from taking a quantitative-genetic approach and present a framework for studying the causes of phenotypic variation. We review past research, that has mainly studied single migratory traits in captive birds, and discuss how this work could be extended to study genetic variation in the wild and to account for genetic correlations and correlated selection. In the future, reaction-norm approaches may become very important, as they allow the study of genetic and environmental effects on phenotypic expression within a single framework, as well as of their interactions. We advocate making more use of repeated measurements on single individuals to study the causes of among-individual variation in the wild, as they are easier to obtain than data on relatives and can provide valuable information for identifying and selecting traits. This approach will be particularly informative if it involves systematic testing of individuals under different environmental conditions. We propose extending this research agenda by using optimality models to predict levels of variation and covariation among traits and constraints. This may help us to select traits in which we might expect genetic variation, and to identify the most informative environmental axes. We also recommend an expansion of the passerine model, as this model does not apply to birds, like geese, where cultural transmission of spatio-temporal information is an important determinant of migration patterns and their variation.
Resumo:
A distinct feature of several recent models of contrast masking is that detecting mechanisms are divisively inhibited by a broadly tuned ‘gain pool’ of narrow-band spatial pattern mechanisms. The contrast gain control provided by this ‘cross-channel’ architecture achieves contrast normalisation of early pattern mechanisms, which is important for keeping them within the non-saturating part of their biological operating characteristic. These models superseded earlier ‘within-channel’ models, which had supposed that masking arose from direct stimulation of the detecting mechanism by the mask. To reveal the extent of masking, I measured the levels produced with large ranges of pattern spatial relationships that have not been explored before. Substantial interactions between channels tuned to different orientations and spatial frequencies were found. Differences in the masking levels produced with single and multiple component mask patterns provided insights into the summation rules within the gain pool. A widely used cross-channel masking model was tested on these data and was found to perform poorly. The model was developed and a version in which linear summation was allowed between all components within the gain pool but with the exception of the self-suppressing route typically provided the best account of the data. Subsequently, an adaptation paradigm was used to probe the processes underlying pooled responses in masking. This delivered less insight into the pooling than the other studies and areas were identified that require investigation for a new unifying model of masking and adaptation. In further experiments, levels of cross-channel masking were found to be greatly influenced by the spatio-temporal tuning of the channels involved. Old masking experiments and ideas relying on within-channel models were re-elevated in terms of contemporary cross-channel models (e.g. estimations of channel bandwidths from orientation masking functions) and this led to different conclusions than those originally arrived at. The investigation of effects with spatio-temporally superimposed patterns is focussed upon throughout this work, though it is shown how these enquiries might be extended to investigate effects across spatial and temporal position.
Cross-orientation masking is speed invariant between ocular pathways but speed dependent within them
Resumo:
In human (D. H. Baker, T. S. Meese, & R. J. Summers, 2007b) and in cat (B. Li, M. R. Peterson, J. K. Thompson, T. Duong, & R. D. Freeman, 2005; F. Sengpiel & V. Vorobyov, 2005) there are at least two routes to cross-orientation suppression (XOS): a broadband, non-adaptable, monocular (within-eye) pathway and a more narrowband, adaptable interocular (between the eyes) pathway. We further characterized these two routes psychophysically by measuring the weight of suppression across spatio-temporal frequency for cross-oriented pairs of superimposed flickering Gabor patches. Masking functions were normalized to unmasked detection thresholds and fitted by a two-stage model of contrast gain control (T. S. Meese, M. A. Georgeson, & D. H. Baker, 2006) that was developed to accommodate XOS. The weight of monocular suppression was a power function of the scalar quantity ‘speed’ (temporal-frequency/spatial-frequency). This weight can be expressed as the ratio of non-oriented magno- and parvo-like mechanisms, permitting a fast-acting, early locus, as befits the urgency for action associated with high retinal speeds. In contrast, dichoptic-masking functions superimposed. Overall, this (i) provides further evidence for dissociation between the two forms of XOS in humans, and (ii) indicates that the monocular and interocular varieties of XOS are space/time scale-dependent and scale-invariant, respectively. This suggests an image-processing role for interocular XOS that is tailored to natural image statistics—very different from that of the scale-dependent (speed-dependent) monocular variety.
Resumo:
We report high-resolution real-time measurements of spectrum evolution in a fibre. The proposed method combines optical heterodyning with a technique of spatio-temporal intensity measurements revealing fast spectral dynamics of cavity-based systems.
Resumo:
In oscillatory reaction-diffusion systems, time-delay feedback can lead to the instability of uniform oscillations with respect to formation of standing waves. Here, we investigate how the presence of additive, Gaussian white noise can induce the appearance of standing waves. Combining analytical solutions of the model with spatio-temporal simulations, we find that noise can promote standing waves in regimes where the deterministic uniform oscillatory modes are stabilized. As the deterministic phase boundary is approached, the spatio-temporal correlations become stronger, such that even small noise can induce standing waves in this parameter regime. With larger noise strengths, standing waves could be induced at finite distances from the (deterministic) phase boundary. The overall dynamics is defined through the interplay of noisy forcing with the inherent reaction-diffusion dynamics.
Resumo:
Small-bodied fishes constitute an important assemblage in many wetlands. In wetlands that dry periodically except for small permanent waterbodies, these fishes are quick to respond to change and can undergo large fluctuations in numbers and biomasses. An important aspect of landscapes that are mixtures of marsh and permanent waterbodies is that high rates of biomass production occur in the marshes during flooding phases, while the permanent waterbodies serve as refuges for many biotic components during the dry phases. The temporal and spatial dynamics of the small fishes are ecologically important, as these fishes provide a crucial food base for higher trophic levels, such as wading birds. We develop a simple model that is analytically tractable, describing the main processes of the spatio-temporal dynamics of a population of small-bodied fish in a seasonal wetland environment, consisting of marsh and permanent waterbodies. The population expands into newly flooded areas during the wet season and contracts during declining water levels in the dry season. If the marsh dries completely during these times (a drydown), the fish need refuge in permanent waterbodies. At least three new and general conclusions arise from the model: (1) there is an optimal rate at which fish should expand into a newly flooding area to maximize population production; (2) there is also a fluctuation amplitude of water level that maximizes fish production, and (3) there is an upper limit on the number of fish that can reach a permanent waterbody during a drydown, no matter how large the marsh surface area is that drains into the waterbody. Because water levels can be manipulated in many wetlands, it is useful to have an understanding of the role of these fluctuations.
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (D14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of D14C over the last 30,000 years. In ~2,500-3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (DD14C = -1,000 per mil). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.
Resumo:
Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.