930 resultados para Spark ignition engines
Resumo:
Doped ceria (CeO2) compounds are fluorite-type oxides that show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, considerable interest has been shown in application of these materials for low (500 degrees-650 degrees C) temperature operation of solid oxide fuel cells (SOFCs). To improve the conductivity in dysprosium (Dy) doped CeO2, nano-size round shape particles were prepared using a coprecipitation method. The dense sintered bodies with small grain sizes (< 300 nm) were fabricated using a combined process of spark plasma sintering (SPS) and conventional sintering (CS). Dy-doped CeO2 sintered body with large grains (1.1 mu m) had large micro-domains. The conductivity in the sintered body was low (-3.2 S/cm at 500 degrees C). On the other hand, the conductivity in the specimens obtained by the combined process was considerably improved. The micro-domain size in the grain was minimized using the present process. It is concluded that the enhancement of conductivity in dense specimens produced by the combined process (SPS+CS) is attributable to the microstructural changes within the grains.
Resumo:
The aim of this project was to carry out an investigastion into suitable alternatives to gasoline for use in modern automobiles. The fuel would provide the western world with a means of extending the natural gasoline resources and the third world a way of cutting down their dependence on the oil producing countries for their energy supply. Alcohols, namely methanol and ethanol, provide this solution. They can be used as gasoline extenders or as fuels on their own.In order to fulfil the aims of the project a literature study was carried out to investigate methods and costs of producing these fuels. An experimental programme was then set up in which the performance of the alcohols was studied on a conventional engine. The engine used for this purpose was the Fiat 127 930cc four cylinder engine. This engine was used because of its popularity in the European countries. The Weber fixed jet carburettor, since it was designed to be used with gasoline, was adapted so that the alcohol fuels and the blends could be used in the most efficient way. This was mainly to take account of the lower heat content of the alcohols. The adaptation of the carburettor was in the form of enlarging the main metering jet. Allowances for the alcohol's lower specfic gravity were made during fuel metering.Owing to the low front end volatility of methanol and ethanol, it was expected that `start up' problems would occur. An experimental programme was set up to determine the temperature range for a minimum required percentage `take off' that would ease start-up since it was determined that a `take off' of about 5% v/v liquid in the vapour phase would be sufficient for starting. Additions such as iso-pentane and n-pentane were used to improve the front end volatility. This proved to be successful.The lower heat content of the alcohol fuels also meant that a greater charge of fuel would be required. This was seen to pose further problems with fuel distribution from the carburettor to the individual cylinders on a multicylinder engine. Since it was not possible to modify the existing manifold on the Fiat 127 engine, experimental tests on manifold geometry were carried out using the Ricardo E6 single cylinder variable compression engine. Results from these tests showed that the length, shape and cross-sectional area of the manifold play an important part in the distribution of the fuel entering the cylinder, ie. vapour phase, vapour/small liquid droplet/liquid film phase, vapour/large liquid droplet/liquid film phase etc.The solvent properties of the alcohols and their greater electrical conductivity suggested that the materials used on the engine would be prone to chemical attack. In order to determine the type and rate of chemical attack, an experimental programme was set up whereby carburettor and other components were immersed in the alcohols and in blends of alcohol with gasoline. The test fuels were aerated and in some instances kept at temperatures ranging from 50oC to 90oC. Results from these tests suggest that not all materials used in the conventional engine are equally suitable for use with alcohols and alcohol/gasoline blends. Aluminium for instance was severely attacked by methanol causing pitting and pin-holing in the surface.In general this whole experimental programme gave valuable information on the acceptability of substitute fuels. While the long term effects of alcohol use merit further study, it is clear that methanol and ethanol will be increasingly used in place of gasoline.
Resumo:
Electrical and thermal transport properties of the carbon nanotube bulk material compacted by spark plasma sintering have been investigated. The electrical conductivity of the as-prepared sample shows a lnT dependence from 4 to 50 K, after which the conductivity begins to increase approximately linearly with temperature. A magnetic field applied perpendicularly to the sample increases the electrical conductivity in the range of 0-8T at all testing temperatures, indicating that the sample possesses the two-dimensional weak localization at lower temperatures (?50 K), while behaviors like a semimetal at higher temperatures (?50 K). This material acts like a uniform compact consisting of randomly distributed two dimensional graphene layers. For the same material, the thermal conductivity is found to decrease almost linearly with decreasing temperature, similar to that of a single multi-walled carbon nanotube. Magnetic fields applied perpendicularly to the sample cause the thermal conductivity to decrease significantly, but the influence of the magnetic fields becomes weak when temperature increases.
Resumo:
The surfaces of bulk carbon nanotubes compacted by plasma spark sintering have been modified with polytetrofluorethylene, thereby producing a super-hydrophobic surface with a contact angle above 160°. The surface roughness and air trapped in pores and between the polytetrofluorethylene particles are responsible for the super-hydrophobility. The material can be machined into desired shapes with fine and complex channels, allowing internal surfaces to also be super-hydrophobic.
Resumo:
Renewable alternatives such as biofuels and optimisation of the engine operating parameters can enhance engine performance and reduce emissions. The temperature of the engine coolant is known to have significant influence on engine performance and emissions. Whereas much existing literature describes the effects of coolant temperature in engines using fossil derived fuels, very few studies have investigated these effects when biofuel is used as an alternative fuel. Jatropha oil is a non-edible biofuel which can substitute fossil diesel for compression ignition (CI) engine use. However, due to the high viscosity of Jatropha oil, technique such as transesterification, preheating the oil, mixing with other fuel is recommended for improved combustion and reduced emissions. In this study, Jatropha oil was blended separately with ethanol and butanol, at ratios of 80:20 and 70:30. The fuel properties of all four blends were measured and compared with diesel and jatropha oil. It was found that the 80% jatropha oil + 20% butanol blend was the most suitable alternative, as its properties were closest to that of diesel. A 2 cylinder Yanmar engine was used; the cooling water temperature was varied between 50°C and 95°C. In general, it was found that when the temperature of the cooling water was increased, the combustion process enhanced for both diesel and Jatropha-Butanol blend. The CO2 emissions for both diesel and biofuel blend were observed to increase with temperature. As a result CO, O2 and lambda values were observed to decrease when cooling water temperature increased. When the engine was operated using diesel, NOX emissions correlated in an opposite manner to smoke opacity; however, when the biofuel blend was used, NOX emissions and smoke opacity correlated in an identical manner. The brake thermal efficiencies were found to increase slightly as the temperature was increased. In contrast, for all fuels, the volumetric efficiency was observed to decrease as the coolant temperature was increased. Brake specific fuel consumption was observed to decrease as the temperature was increased and was higher on average when the biofuel was used, in comparison to diesel. The study concludes that the effects of engine coolant temperature on engine performance and emission characteristics differ between biofuel blend and fossil diesel operation. The coolant temperature needs to be optimised depending on the type of biofuel for optimum engine performance and reduced emissions.
Resumo:
When a query is passed to multiple search engines, each search engine returns a ranked list of documents. Researchers have demonstrated that combining results, in the form of a "metasearch engine", produces a significant improvement in coverage and search effectiveness. This paper proposes a linear programming mathematical model for optimizing the ranked list result of a given group of Web search engines for an issued query. An application with a numerical illustration shows the advantages of the proposed method. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Digestate from the anaerobic digestion conversion process is widely used as a farm land fertiliser. This study proposes an alternative use as a source of energy. Dried digestate was pyrolysed and the resulting oil was blended with waste cooking oil and butanol (10, 20 and 30 vol.%). The physical and chemical properties of the pyrolysis oil blends were measured and compared with pure fossil diesel and waste cooking oil. The blends were tested in a multi-cylinder indirect injection compression ignition engine.Engine combustion, exhaust gas emissions and performance parameters were measured and compared with pure fossil diesel operation. The ASTM copper corrosion values for 20% and 30% pyrolysis blends were 2c, compared to 1b for fossil diesel. The kinematic viscosities of the blends at 40 C were 5–7 times higher than that of fossil diesel. Digested pyrolysis oil blends produced lower in-cylinder peak pressures than fossil diesel and waste cooking oil operation. The maximum heat release rates of the blends were approximately 8% higher than with fossil diesel. The ignition delay periods of the blends were higher; pyrolysis oil blends started to combust late and once combustion started burnt quicker than fossil diesel. The total burning duration of the 20% and 30% blends were decreased by 12% and 3% compared to fossil diesel. At full engine load, the brake thermal efficiencies of the blends were decreased by about 3–7% when compared to fossil diesel. The pyrolysis blends gave lower smoke levels; at full engine load, smoke level of the 20% blend was 44% lower than fossil diesel. In comparison to fossil diesel and at full load, the brake specific fuel consumption (wt.) of the 30% and 20% blends were approximately 32% and 15% higher. At full engine load, the CO emission of the 20% and 30% blends were decreased by 39% and 66% with respect to the fossil diesel. Blends CO2 emissions were similar to that of fossil diesel; at full engine load, 30% blend produced approximately 5% higher CO2 emission than fossil diesel. The study concludes that on the basis of short term engine experiment up to 30% blend of pyrolysis oil from digestate of arable crops can be used in a compression ignition engine.
Resumo:
External combustion heat cycle engines convert thermal energy into useful work. Thermal energy resources include solar, geothermal, bioenergy, and waste heat. To harness these and maximize work output, there has been a renaissance of interest in the investigation of vapour power cycles for quasi-isothermal (near constant temperature) instead of adiabatic expansion. Quasi-isothermal expansion has the advantage of bringing the cycle efficiency closer to the ideal Carnot efficiency, but it requires heat to be transferred to the working fluid as it expands. This paper reviews various low-temperature vapour power cycle heat engines with quasi-isothermal expansion, including the methods employed to realize the heat transfer. The heat engines take the form of the Rankine cycle with continuous heat addition during the expansion process, or the Stirling cycle with a condensable vapour as working fluid. Compared to more standard Stirling engines using gas, the specific work output is higher. Cryogenic heat engines based on the Rankine cycle have also been enhanced with quasi-isothermal expansion. Liquid flooded expansion and expander surface heating are the two main heat transfer methods employed. Liquid flooded expansion has been applied mainly in rotary expanders, including scroll turbines; whereas surface heating has been applied mainly in reciprocating expanders. © 2014 Elsevier Ltd.
Resumo:
As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. ^ In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.^
Resumo:
The distribution of methane and hydrogen sulfide concentrations in sediments of various basins of the Baltic Sea was investigated during 4 cruises in 1995 and 1996. Significant differences in the concentrations of both compounds were recorded between the basins and also between different areas within the Gotland Deep. High-methane sediments with distinctly increasing concentrations from the surface to deeper layers were distinguished from low-methane sediments without a clear gradient. Methane concentrations exhibited a fair correlation with the sediment accumulation rate, determined by measuring the total thickness of the post-Ancylus Holocene sequence on echosounding profiles in the Gotland Deep. Only weak correlations were observed with the content of organic matter in the surface layers of the sediments. Hydrogen sulfide concentrations in the sediments showed a positive correlation with methane concentrations, but, in contrast to methane concentrations, were strongly influenced by the transition from oxic to anoxic conditions in the water column between 1995 and 1996. Sediments in the deepest part of the Gotland Basin (>237 m water depth), covering an area of approximately 35 km**2, were characterized by especially high accumulation rates (>70 cm/ka) and high methane and hydrogen sulfide contents. Concentrations of these compounds decreased rapidly towards the slope of the basin.
Resumo:
As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.